LOW-LIGHT-LEVEL IMAGING

2. Low-light-level Cameras 1.The Problem 3. Solutions

How Much Light? I.

- Illumination system:
- 75 W Xenon Arc (~1mW/nm in visible)
- 490/10 nm exciter filter (60 % T)
- 505 nm dichromatic mirror (85% Reflect)
- 100X/1.32 objective (95 % T)
- 10 mW*0.6*0.85*0.95=4.8 mW
- Field 40 microns diameter, area = $12.6 \text{ x} 10^{-6} \text{ cm}^2$
- $Flux = 4.8 \text{ x } 10^{-3} \text{W}/12.6 \text{ x } 10^{-6} \text{cm}^2 = 380 \text{ W}/\text{cm}^2$

How Much Light? II.

- 380 W/cm^2 is about 2500 times the flux ofsunlight on the brightest day.
- $10^5 W/cm^2$ (1mW in a 0.2 micron diameter Fluxes in a confocal may be as high as 8 x spot, area = $12.6 \times 10^{-10} \text{ cm}^{2}$.
- In a 2-photon confocal, the light flux is 10⁶ higher than in a single photon confocal.

How Much Light? III.

- Detection system:
- Objective lens NA (30% collection)
- Dichromatic (80% T)
- Barrier Filter (85% T)
- Detector QE (10-80%)
- Overall: 2%-16%
- Fluorescein emission is 36,000 photons. Detection ranges from 720 to 5760 photons

Low-Light Fluorescence Microscopy **Imaging Paradox**

- Photodamage is reduced by lowering the incident light flux.
- signal decreases with resultant degradation As the light flux diminishes, the detected of image quality and signal/noise.

Image Intensifiers II.

Responsivity

THE INTENSIFIED PROGRESSIVE SCAN CCD CAMERA

- sensitive Gen III image intensifier to a 1K x 1K or Couple, with a tapered fiber optic, a blue-green higher resolution CCD sensor. 0
 - Strengths: 40-50% QE

Video-rate or higher output at 10-12 bits No fixed pattern noise (chicken wire) 700 TV line resolution (H & V) 80,000 Gain, low EBI

LIMITATIONS OF THE PROGRESSIVE • Burning and sticking from overexposure • Dynamic range limited-10 bit resolution SCAN INTENSIFIED CCD CAMERA is possible, 12 bit is questionable Few manufacturers 0

• Limited range of image formats and read-out formats

Electron-bombarded CCD

SOCS062A - JANUARY 2001 - REVISED JANUARY 2001

Evils of Stray Light I

Problems in Imaging Live Cells

- Temperature control—chamber, objective lens—prevention of focus drift
- Perfusion—changing composition without specimen movement or focus shift
- Reduction of stray light—necessitated by the need for dim illumination of specimen
- Speed—detectors, illumination switching

Temperature Controlled Environmental **Enclosure and Stray Light Shield**

Alternative to enclosure: Objective Lens Heater

Prevention of Focus Drift

- constantly but limit current so that set • Keep specimen chamber heater on point is never achieved.
- Heat enclosure to a few degrees below set point to reduce temperature gradients between specimen and microscope.
- Warm perfusates to slightly higher than set point to allow for cooling and to prevent degassing. 0

Perfusion Systems—Flow Profiles

Perfusion Systems—Cultured Cells

Perfusion Systems—Renal Tubules

Perfusion Systems—Problems

- Perfusate temperature control
- solution degassing and bubble formation Perfusate gassing-CO₂ equilibration,
- pump, flow regulation, pressure balance Mechanical disturbances—gravity vs. •
- **Mixing solutions or adding reagents** •

Summary Live Cell Imaging

- Live cell imaging requires attention to control of temperature and perfusion SVStems.
- Intervening solution layers can be kept very thin while maintaining adequate control of the rate and composition of the perfusate.
- Illumination intensity must be low, detector sensitivity high, speed matters.

	knergy	Output	
HBO 100	2200 lumens	1700 cd/mm ²	0.25 x 0.25 mm
XBO 75	850 lumens	800 cd/mm ²	0.25 x 0.50 mm
Tungsten/ Halogen	2800 lumens	45 cd/mm^2	4.2 x 2.3 mm

Ç

WAVELENGTH SELECTION

- Interference Filters and Filter Wheels
- Electro-optical methods: AOTF and LCTF
- Fiber Optic Coupling to Source
- Double-View Microscopy

Interference Filter Design

Wavelength Selection by Filter Wheel

Electro-optic Wavelength Selection

AOTF LCTF PRISM

switching limited by propagation speed of acoustic wave. 2. Diffraction efficiency of the first order beam can be as Acousto-optical tunable filter (AOTF) for excitation high as 85%. High speed (MHz) wavelength and power 1. Requires a well collimated, polarized light beam of 3. Best with laser sources although devices for nonlimited dimensions at the Bragg angle. wavelength selection.

coherent sources have been constructed. Rugged.

Excitation Ratio Imaging with an AOTF

Leica's Acousto-optic Beam Splitter

X = specimen, C1=AOBS, C2,C3,C4 = correction prisms, D =detector, L=laser, A=acoutic input, P,S=polarization directions

E Leica AOBS in Confocal

LCTF Design

Spectral Scanning with a LCTF

Recovering the Lost Signal

Liquid crystal tunable filter (LCTF) for emission wavelength selection.

1. Wide acceptance angle, high spatial resolution, large clear aperture are strengths.

2. Limitations include slow switching speed (~25 ms), (10-30% of unpolarized light), low damage threshold. devices are available (700-1100 nm), requirement for limited spectral range (400-750 nm) although near IR polarized light, variable bandwidth, low transmission

Fiber Optic Coupling in Microscopy

- Two types of fibers: single- and multi-mode
- and propagate only one mode from the laser Single-mode fibers are small (3-8 um ID) and produce a perfect Gaussian beam.
- Multi-mode fibers are large (100-1200 um ID) and propagate many modes. They produce a top-hat profile output.

Fiber Optic Coupling of Light Source with a Multi-mode Fiber

Double-View Microscopy (Kinoshita) **Optical Insights**

Astroglia and Neurons: GFAP-Alexa and Propidium Iodide

PI : > 600 nm

Overlay

Alexa 530

Computed Tomography Imaging Spectrometer

RAW DIFFRACTION IMAGE FROM CTIS MICROSCOPE

Reconstructed Spectral Images

83 () 83 () 30 Reconstructed Object cube

GFAP-Alexa and PI Labeling of RIN-3M1 Cells

Limitations:

-Limited Range of Excitation Wavelengths

CTIS Limitations:

- Signal to Noise Ratio Limits the Temporal Resolution -Spatial Resolution is Limited by the Chip Size
- Implementation of Structured Illumination. Not Effective on Low Contrast Images.

Look inside the solution – LSM 510 META

- Multiple pinhole concept
- Adjustable pinholes (x,y, Ø)
- Efficient beam path
- META detector
- PMT array with 32 elements
- Reflection grating for even, temperature-insensitive dispersion
- Capture full emission spectra

Emission Fingerprinting 4 FPs separated

CFP, CGFP, GFP and YFP

Cultured cells expressing 4 FPs in ER, nuclei, plasma membranes and mitochondria, repectively

Sample: Drs. Miyawaki, Hirano, RIKEN, Wako, Japan

the auto-fluorescence issue

Alexa 532, Cy3 and autofluorescence

Section through fly (Drosophila melanogaster) retina labeled with Alexa 532-phalloidin and Cy3 (Na⁺/K⁺-ATPase immunostain)

Sample: Dr. O. Baumann, Univ. Potsdam, Germany

Samples: Dr. O. Baumann, Univ. Potsdam, Germany

Alexa 532, Cy3, and autofluorescence Section through fly (*Drosophila melanogaster*) retina labeled with Alexa 532-phalloidin and Cy3 (Na⁺/K⁺-ATPase immunostain)

Sample: Bob Zucker EPA

using META and Emission Fingerprinting

unmixing (clearly separates cell types)

spectral analysis (reveals emission change

"bandpass" image (just shows bright spots)

Investigation of spectral changes