Machine search vs. humans in modeling or "I'm sorry Dave, I'm afraid I can't do that"

Mark Sale M.D. Next Level Solutions

Nov 2, 2011

Current (local) search algorithm – assumption is path/starting point independence

Prior knowledge (Bias? Prejudice?) in model selection

- Certainly we know that weight is a predictor of volume, and the astrological sign could never predict anything
- So, never test V = F(wt), just put it in.
- And, never test (V = f(astrological sign), even if it shows up, you wouldn't believe it.
 Right??

Astrological sign is a useful predictor of hockey success in Canada (Capricorn and Aries are the most likely to succeed) and football success in UK, and success in a number of sports.

Musch J, Grondin S. "Unequal competition as an Impediment to personal development: A review of relative age effect in sport", Developmental Review 21(2) 2001 147-167

The case for a global search (as opposed to local search)

Unexpected things happen

- Things we're sure about turn out not to be the case
- Things we're sure cannot be turn out to be the case
- You won't find either unless you look.
- Local minima problem

Another search algorithm: Genetic algorithm

- Reproduction of evolution/mutation/cross over/survival of the fittest.
- Widely used to optimize engineering systems.

But, creating "learning/understanding/insight" is different from "optimizing"- isn't it?

- "Distilling free-form natural laws from experimental data". Science 324:81-85
- Used GA to find combination of elementary math function (+,-,*,sin, tan, ln) and data to derive equation for motion of double pendulum.

 Is learning/generating understanding/insight frequently just assembling existing pieces in new, useful (perhaps insightful) ways?

 $114.28v^{2} + 692.32x^{2}$ Hamiltonian $v^{2} - 6.04x^{2}$ Lagrangian a - 0.008v - 6.02xEquation of motion

 $\begin{array}{c} 1.37{\cdot}\omega^2 + 3.29{\cdot}\cos(\theta) \\ \text{Lagrangian} \end{array}$

 $2.71\alpha + 0.054\omega - 3.54\sin(\theta)$ Equation of motion $(x - 77.72)^2 + (y - 106.48)^2$ Circular manifold

 $\omega_1^2 + 0.32\omega_2^2 - \\124.13\cos(\theta_1) - 46.82\cos(\theta_2) + \\0.82\omega_1\omega_2\cos(\theta_1 - \theta_2) \\ \text{Hamiltonian}$

All science is either physics or stamp collecting* (Ernest Rutherford)

*And it appears that perhaps at least some physics is stamp collecting as well

I can't claim to have ever come up with anything genuinely novel. I'm a stamp collector

Similarly:

 Automated refinement and inference of analytical models for metabolic networks. Michael D Schmidt, Ravishankar R Vallabhajosyula, Jerry W Jenkins, Jonathan E Hood, Abhishek S Soni, John P Wikswo, Hod Lipson. Physical Biology, 2011; 8 (5): 055011 DOI:

Proposal:

- Hybrid modeling selection algorithm
- Combine robustness and efficiency of global search with biological understanding/experience, diagnostic plot evaluation and consideration of plausibility
- Avoid local minima in the search space by having a better starting point.
 - Start with global model search (which may require some iteration, using biological understanding etc.), to get a better starting point, more likely to be monotonically down.
 - The "search space" is user defined
 - The search criteria are user defined
 - Then forward addition/backward elimination for plausibility.

So, can we get in the ball park: Results of cross over trial of traditional vs. GA for 7 analyses from Sherer et. al. (test of just the search algorithm only)

Compound	Final stepwise model	Final SOHGA model	AIC _{SOHGA} – AIC _{stepwise} (% change)
Citalopram, IV	BIC = 5760.2	BIC = 5,436.2	
	AIC = 5,713.5	AIC = 5,363.6	-357.9
	-2LL = 5,695.5	-2LL = 5,335.6	
DMAG, IV	BIC = 9,938.2	BIC = 9,913.0	
	AIC = 9,862.5	AIC = 9,847.4	-15.1
	-2LL = 9,832.5	-2LL = 9,821.4	
Escitalopram	BIC = 2,774.9	BIC = 2,777.2	
	AIC = 2,729.1	AIC = 2,735.6	6.5
	-2LL = 2,707.1	-2LL = 2,715.6	
Olanzapine, oral	BIC = 10,413.8	BIC = 9,937.9	
	AIC = 10,365.8	AIC = 9,895.3	-470.5
	-2LL = 10,347.8	-2LL = 9,879.3	
Perphenazine, oral	BIC = 601.1	BIC = 604.4	
	AIC = 560.7	AIC = 555.9	-4.8
	-2LL = 540.7	-2LL = 531.9	
Risperidone, oral	BIC = 5,188.5	BIC = 4,824.7	
	AIC = 5,127.1	AIC = 4,762.7	-364.4
	-2LL = 5,103.1	-2LL = 4,738.7	
Ziprasidone, oral	BIC = 4,880.8	BIC = 4,759.4	
	AIC = 4,850.4	AIC = 4,758.7	-91.7
	-2LL = 4,836.4	-2LL=4,746.7	

Comparison of traditional and GA final models final status (just GA, no final FA/BE step)

	Convergence			Covariance step			
	Final stepwise model	Best SOHGA candidate		Final stepwise model	Best SOHGA candidate		
Citalopram, IV	Successful	Successful		Unsuccessful	Successful		
DMAG, IV	Successful	Successful		Unsuccessful	Successful		
Escitalopram	Successful	Successful		Successful	Successful		
Olanzapine, oral	Successful after fixing K _a	Successful		Successful	Successful		
Perphenazine, oral	Successful after fixing K _a	Successful		Unsuccessful	Successful		
Risperidone, oral	Successful after fixing K _a	Successful		Successful	Successful		
Ziprasidone, oral	Successful after fixing K _a	Successful		Successful Succes			

Comparison of traditional vs. GA final models:

- Identical structural models.
- The hybrid GA models included 50% (7 of I4) of significant covariates in the stepwise models and the stepwise model included 30% (7 of 23) of significant covariates in the final SOHGA models.
- SOHGA included fewer IIV terms
- So, more covariates, fewer IIV terms

Example:

- Motivated by a sponsors desire to have all decision point models with successful covariance step
- Could not find *any* models with successful covariance (1|2 compartment, ETA on CL, V, concomitant med on CL and F, lag time)
- So, we proposed that we start with global search algorithm to find a model with successful covariance step.

Outcome of real world example of hybrid GA/FABE modeling

- Start by generating the hypotheses (this part doesn't change)
- Found a starting point with successful covariance step (key was inter occasion variability in CL and initial estimates, along with con-med on CL)
- Final Model from SOHGA was a local minimum. Fixed by removing one OMEGA term.
- Final model (after FA/BE) was similar to GA model, mostly rearranging things.
- Also permitted searching on initial estimates, CTYPE, NUMPOINTS, ADVAN6|8|9|13 etc.

Advantages of hybrid GA/FABE

- Robustness and efficiency of global search
- Biological insight/evaluation of diagnostics and plausibility of FA/BE
- Faster (1000's of models by GA followed by dozens of model by hand, rather than 100's of models by hand).
- More objective, more thorough.

Multi objective optimization

- Single objective GA uses a composite "fitness" function – combination of -2LL and other things (user defined penalties for parameters, convergence, covariance etc)
- This is pretty rigid and arbitrary who's to say that an additional THETA is "worth" so many points (besides Akaike)
- People doing GA found that the decision maker didn't want to be told – here is the "best" option. The decision makers felt that certain "subjective, experience based" criteria couldn't be captured.

So, optimize over many criteria, present user with a variety of options

- So, you want a bridge built, or a model selected. There are trade offs that may be difficult to quantify
 - Bridge More expensive lasts longer
 - Model Better -2LL/VPC, more parameters
- Present a variety of bridges/models, Some with more parameters, some with fewer, some with successful covariance etc.

Results: Non dominated solutions

Another (simpler) example: Only covariates/OMEGA/SIGMA 31 generations

Trade offs:

S NONMEM GA

File Edit Run Options Help

	OBJ	MIN?	Cov?	Corr?	SigDig	-LOG(NPDE)	Rank	N Parms	Crowding	Files	Plots	Gen	Ind	Density	_	
9001	4795.6	Yes	No	No	3	2.27	1	8	0.7576			31	1	29		
9002	5002.7	Yes	No	No	3.1	1.37	1	15	0.7576			31	2	6		
9003	4/46./	Yes	Yes	Yes	3.4	3.3	1	6	0.0364			31	3	181		
9004	4770.3	Yes	Yes	Yes	3.5	4.4	1	5	1.2157			31	4	106		
9005	4735.9	Yes	Yes	Yes	3	4.13	1	10	0.1386	_		31	5	1/4		
9006	4/41.3	Yes	NO	No	3.3	2.83	1	9	0.0928			3	6	106		
9007	4738.5	No	No	No	1.1	3.22	1	12	0.1484	_				/1		1
9008	4/42.8	Yes	Yes	Yes	3.8	2.82	1	8	0.0364	_		3	8	191		
9009	4/43.5	Yes	Yes	Yes	3.5	3.02	1	1	0.0364			3	9	202		
9010	4/33.	INO N	INO	NO	2.5	2.95	1	16	0.7255			3	1 10	58		
9011	4/38.4	INO X	IN0	NO	2.1	3.31	1	11	0.0574	-			11	139		
9012	4/41.6	Yes	Yes	Yes	3.7	3.21	2	9	0.069	-		3	1 12	185		
9013	4739.5	Yes	NO	No	3	3.06	2	12	0.0199				1 13	59		ŀ
9014	4/38.8	NO	NO	No	2.3	3.1	1	10	0.0577				14	1/5		
9015	4745.3	No	No	No	1.2	2.48	2	11	0.0679				1 15	89		
9016	4740.8	No	No	No	2.5	2.5	2	10	0.0007	_		3	16	122		
9017	4741.6	Yes	Yes	Yes	3.2	3.65	2	9	0.0805			31	17	196		
9018	4738.7	Yes	Yes	Yes	3.3	3.9	1	10	0.037			31	18	115		
9019	4746.7	No	No	No	0.2	2.3	1	12	0.0574			3	19	97		
9020	4747.	No	No	No	1.7	2.34	1	10	0.1481			31	1 20	144		
9021	4742.9	Yes	Yes	Yes	3.3	2.77	1	8	0.0388			31	21	168		
9022	4741.7	Yes	Yes	Yes	3	2.87	1	11	0.0367			31	22	110		
9023	4742.3	Yes	Yes	Yes	3.4	2.89	1	8	0.0364			31	23	182		
9024	4732.2	Yes	No	No	3.1	3.73	1	14	0.6667			31	24	87		
9025	4740.5	No	No	No	2.8	2.71	1	9	0.0584			31	25	197		
9026	4740.	No	No	No	2.3	3.43	1	9	0.0579			31	26	i 170		
9027	4740.8	Yes	Yes	Yes	3.8	2.96	2	11	0.1847			31	27	94		L
9028	4741.6	No	No	No	2.9	3.01	1	8	0.0581			31	28	176		
9029	4731.7	No	No	No	2.3	3.35	1	14	0.8147			31	29	118		
9030	4737.7	No	No	No	0.7	3.15	1	13	0.1505			31	I 30	59		
9031	4738.7	Yes	Yes	Yes	3.1	3.39	1	11	0.0364			31	31	103		
9032	4742.3	Yes	Yes	Yes	3.1	2.87	1	8	0.0364			31	I 32	225		6
9033	4740.2	Yes	No	No	3.3	3.11	2	11	0.0048			31	I 33	44		
9034	4740.2	Yes	No	No	3.2	2.8	1	11	0.0008			31	34	117		
9035	4740.4	Yes	Yes	Yes	3.2	3.23	2	11	0.069			31	35	115		
9036	4734.2	Yes	Yes	Yes	3.1	3.83	1	12	0.0364			31	36	158		
9037	4741.7	Yes	Yes	Yes	3.1	2.49	1	9	0.0364			31	37	211		1
9038	4740.6	Yes	Yes	Yes	3.2	2.96	1	10	0.0374			31	38	149		
9039	4739.7	Yes	Yes	Yes	3.4	3.67	1	9	0.0386			31	39	187		
9040	4732.9	Yes	No	No	3.3	3.73	1	11	0.0012			31	I 40	119	•	
40	NMEM workers st	arted														

Generations

⁴⁶⁷⁹

Generation 31

Model 2, Failed Cov, Best NPDE = 1.37

Model 5, Best OBJ with Successful Cov, NPDE = 4.13

Generated Control Files for Models 2 and 5

TVCL3 = (THETA(1) +AGE*THETA(4)) *EXP(WT*THETA(5))	TVCL3 = THETA(1)*(1+AGE*THETA(4)) *(1+WT*THETA(5))						
TVCL2 = TVCL3 +SEX*THETA(6)	TVCL2 = TVCL3 +SEX*THETA(6)						
TVCLI = TVCL2 *(I+AI*THETA(7))	TVCLI = TVCL2						
TVCL = TVCLI *(I+CI*THETA(8))	TVCL = TVCLI +CII*THETA(7)						
CL = TVCL +ETA(I)	CL = TVCL *EXP(ETA(I))						
TVV = THETA(2) +SEX*THETA(9)	TVV = THETA(2) + SEX*THETA(8)						
TV = TVV * (I + ETA(2))	TV = TVV *EXP(ETA(2))						
TVKA = THETA(3)	TVKA = THETA(3)						
KA = TVKA +ETA(3)	KA = TVKA						
V = TV	V = TV						
S2 = V	S2 = V						

Model 2, OBJ = 5003, Failed Cov, Best NPDE Model 5, Best OBJ with Successful Cov, NPDE = 1.37 = 4.13

Context:

- To do this, you need to be able to create hypotheses in large batches
- So, this really isn't very applicable to highly exploratory modeling, where hypotheses are often generated one at a time.
- This is best suited to the fairly routine modeling work (things that usually don't get presented in meetings like this)

An Odyssey through space (actual space or model search space) (Spoiler alert)

Next steps:

- Currently a stable Windows application for SOHGA - ready to share
- MOGA not yet ready to share
- Web application for (Monolix??) (SOHGA/MOGA?)

