










p53 is decreased compared with vehicle-treated controls
(Fig. 6A). Furthermore, there is a significant decrease in the
ATP/AMP ratio (Fig. 6B) that can enhance glycolysis
through stimulation of phosphofructokinase activity.

DISCUSSION

To a large extent, the complex structure of the kidney gives
rise to its many specialized functions. However, this complex-
ity has hampered our understanding of the relationship between
cellular metabolism and transport function along the various
tubular segments. Historical attempts to clarify metabolism
along the tubule have utilized preparations of isolated cells,
dissected tubules, or ex vivo slices. This reductionist approach
has provided some insight but is limited by removing the

context of the intact organ that may influence cell and tubular
metabolism. Flux studies of isolated, perfused kidneys have
provided metabolic information within the context of the or-
gan, but the signal is an aggregate readout from the heteroge-
neous structures of the kidney and thus lacks resolution to the
level of the tubular segments. However, imaging modalities,
combined or alone, are evolving to be powerful tools for the
clinical and preclinical evaluation of metabolism within the
context of the whole organ. PET has gained considerable
attention in the past several decades as an in vivo imaging
modality of metabolism. Application of PET to study metab-
olism in the kidney has had a somewhat slower trajectory
because the most widely used tracer,18F-FDG, is handled by
the kidney in a complex manner. Compartments to be consid-

Fig. 4. Inhibition of p53 promotes metabolic alterations in the kidney consistent with an increased glycolytic flux. A: representative confocal images of
TP53-induced glycolysis and apoptosis regulator (TIGAR) immunofluorescent staining (blue) in the cortex of kidneys from sham animals (vehicle control 	
DMSO) and animals treated with pifithrin-�. Right: quantitation of TIGAR immunostaining. B: representative confocal images of pyruvate dehydrogenase kinase
1 (PDK1) immunofluorescent staining (yellow) in the cortex of kidneys from sham animals (vehicle control 	 DMSO) and animals treated with pifithrin-�. Right:
quantitation of PDK1 immunostaining. C: pyruvate dehydrogenase (PDH) activity in kidney homogenate obtained from sham animals (vehicle control 	 DMSO)
and animals treated with pifithrin-�. Each tracing represents an individual animal, P � 0.001. D: data plots of key glycolytic metabolites as determined by a
nonbiased metabolomics screen using ultra-high performance liquid chromatography-tandem mass spectroscopy. Each data point represents the measured
metabolite from an individual animal in the associated treatment group as a scaled intensity compared with an internal standard.
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ered in the handling of 18F-FDG include a blood compartment,
a intracellular component from reabsorption and metabolism,
and a urinary compartment from filtration and excretion (5). In
particular, 18F-FDG in the pelvis of the kidney can obscure the
signal in the kidney parenchyma. This barrier can be addressed
by extending the time of image acquisition after excessive
tracer is eliminated.

We used a similar approach in this study to model the rate of
18F-FDG uptake by the kidney cortex. Our findings in the
animal studies provide further proof of concept that PET
imaging has the capacity to discern changes in cellular glucose
utilization following a provocative maneuver that can alter
metabolism. Our animal studies are unique in that they exam-
ine differences in the tubular intracellular compartment under
basal physiological conditions following a pharmacological
manipulation to alter cell metabolism. In contrast, prior studies
utilizing PET to study 18F-FDG distribution in the kidney
examined either disease states where there was a combina-
tion of altered glomerular filtration rate and uptake by
inflammatory cells (10, 22) or changes in the excretory
compartment in non-disease states following pharmacolog-
ical manipulation (5).

Recently, we have begun to explore the clinical applicability
of PET to examine 18F-FDG uptake in the kidney cortex of
humans without clinical evidence of kidney disease but with
and without diabetes mellitus. Early observations suggest PET
could be a tool for discerning fundamental differences in
glucose utilization by the kidney that could have prognostic
implications in patients with type II diabetes mellitus. Granted,
much further study is required before this can be plausibly put
forth as a working hypothesis. The development of PET tracers
that can be used to exploit specific aspects of metabolism (6,
12, 19, 36) is expanding rapidly. The further development of

Fig. 6. Inhibition of p53 alters nucleotide concentration in the kidney. A:
representative HPLC chromatograms of various nucleotides in kidney homog-
enates from sham (vehicle control 	 DMSO), pifithrin-�-treated, and p53 null
mice. B: quantitation of ATP/AMP ratios by HPLC in kidney homgenates from
sham (vehicle control 	 DMSO), pifithrin-�-treated, and p53 null mice
demonstrates that ATP/AMP levels are significantly reduced in mice geneti-
cally lacking p53 or in mice where p53 is inhibited by pifithrin-� compared
with sham mice. Similar findings ATP/AMP ratios were observed in sham and
pifithrin-�-treated rats (data not shown).

Fig. 5. Inhibition of p53 decreases mitochondrial potential difference (PD) in
the proximal tubule. Shown are representative intravital MPM images of
tetramethylrhodamine methyl ester (TMRM; red) uptake from sham mice
(vehicle control 	 DMSO; left) and mice treated with pifithrin-� (right). Top:
t 	 0. Middle: t 	 20 min. TMRM uptake is proportional to the mitochondrial
PD. Bottom: quantitation of fluorescence intensity demonstrating that mito-
chondrial PD was significantly diminished, as indicated by TMRM uptake, in
animals treated with pifithrin-� compared with sham animals. Similar findings
were observed in rats (data not shown).
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tracers with specificity for metabolic pathways and selectivity
for cell types will further enhance the appeal of PET as a
noninvasive tool to study metabolism in health and disease, as
well as the impact of therapeutic maneuvers in both clinical
and preclinical studies.

As previously mentioned, one of the obstacles of prior
studies in kidney metabolism was the lack of resolution to
correlate function with metabolism at a specific segment of the
kidney. Our PET studies were able to resolve the cortex from
the medulla, but that was the limit. Consequently, we used
intravital MPM to monitor the cellular uptake of the fluorescent
glucose analog 2-NBDG as a complement to PET for exam-
ining cellular glucose tracer uptake in the living animal. Sim-
ilar to 18F-FDG in PET, 2-NBDG in optical microscopy has
experienced growing application for both preclinical and clin-
ical studies of cancer (8, 16, 21). Our findings with 2-NBDG
and intravital MPM in the proximal tubule of rodents were
parallel to our findings with 18F-FDG and PET in the cortex of
the kidney. Considering that proximal tubules make up the
bulk of the tubules in the cortex, this may not be surprising.
Importantly, our study demonstrates the feasibility of using
2-NBDG to examine glucose metabolism at a cellular resolu-
tion in the kidney of a living animal. In this study, we again
used TMRM and intravital MPM to examine mitochondrial
function in the kidney, similar to previous studies by us and
others (9, 11). The application of 2-NBDG and TMRM to
examine different aspects of metabolism underscores the
emerging power of intravital MPM to study metabolism espe-
cially as the number of fluorescent probes for various pathways
grows.

Both our PET and intravital MPM studies utilized tracers
that are 2-deoxyglucose (2DG) analogs. These compounds are
taken up by cells and phosphorylated by hexokinase in the
cytosol to 2-deoxyglucose-6-phosphate compounds (2DG6P).
The resulting products are asymmetric because of the substi-
tuted 2-deoxy position and are not further metabolized in the
glycolytic pathway. Although phosphatases can convert the
2DG6P analogs back to 2DG analogs, this step has been shown
to be relatively slow (�2 h) (26). Therefore, the tracers
accumulate in the cytosol in direct proportion to uptake into the
cell and the rate of phosphorylation by hexokinase. Pifithrin
and/or p53 is not known to alter the activity of hexokinase or
glucose-6 phosphatases; thus the alterations in glucose tracer
uptake we observed likely represent accommodation for down-
stream changes in glucose metabolism. As previously men-
tioned, both of these tracers have relatively less efficient
transport than glucose through SGLTs. This limits the appli-
cation of these techniques for the strict kinetic study of vecto-
rial glucose transport in the living kidney tubule or other
tissues. Nonetheless, the change in uptake of these tracers
suggests an underlying difference in glucose metabolism just
as they reflect changes in underlying glucose metabolism of
malignant tumors. As mentioned previously, the continued
development of probes for applications in this type of imaging
will provide additional mechanistic insights.

In our study, we used the pharmacological inhibition of p53
as a provocative maneuver to alter cellular metabolism. Reg-
ulation of cellular metabolism is a rapidly emerging role that
has been ascribed to p53. The evolving metabolic theme is that
loss or inhibition of p53 function activates glycolysis and
suppresses OXPHOS (35). The vast majority of the studies

examining the role of p53 in metabolism are derived from
malignant cells although consistent with these studies the
genetic loss of p53 function has been demonstrated to decrease
aerobic metabolism in muscle (20). In addition, Kim et al. (14)
have recently demonstrated that inhibition of the p53 regulat-
ed-enzyme TIGAR in proximal tubules alters glycolytic flux
and is protective in a model of ischemic AKI. Our observations
that acute pharmacological inhibition of p53 1) increases glu-
cose tracer uptake by the proximal tubule, 2) decreases prox-
imal tubule TIGAR, 3) increases proximal tubule PDK1, 4)
decreases cortical PDH activity, 5) decreases proximal tubule
mitochondrial membrane potential, and 6) increases the rela-
tive amount of select glycolytic intermediates in the kidney are
cumulatively consistent with a switch toward glycolytic me-
tabolism in the proximal tubule. Granted, technical limitations
in some of these studies did not allow resolution to the level of
proximal tubule, but they suggest further study is warranted as
this metabolic switch in the proximal tubular cell could provide
a metabolic survival advantage when threatened under stressed
local environments similar to the survival advantage that neo-
plastic cells with the genetic loss of p53 have in similar local
environments.

In summary, our findings in the aggregate 1) demonstrate the
ability of 18F-FDG PET to discern metabolic changes in the
kidney that has the clinical potential to be applied to a wide
variety disease processes and pharmacological trials, 2) reveal
an innovative application of intravital microscopy to investi-
gate glucose tracer uptake in vivo, and 3) provide original
evidence for the capacity of acute, transient p53 inhibition to
shift kidney metabolic flux.
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