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Abstract

In vivo microscopy is a powerful method for studying fun-
damental issues of physiology and pathophysiology. The
recent development of multiphoton fluorescence micros-
copy has extended the reach of in vivo microscopy, sup-
porting high-resolution imaging deep into the tissues and
organs of living animals. As compared with other in vivo
imaging techniques, multiphoton microscopy is uniquely
capable of providing a window into cellular and subcellular
processes in the context of the intact, functioning animal. In
addition, the ability to collect multiple colors of fluores-
cence from the same sample makes in vivo microscopy
uniquely capable of characterizing up to three parameters
from the same volume, supporting powerful correlative
analyses. Since its invention in 1990, multiphoton micros-
copy has been increasingly applied to numerous areas of
medical investigation, providing invaluable insights into
cell physiology and pathology. However, researchers have
only begun to realize the true potential of this powerful
technology as it has proliferated beyond the laboratories of
a relatively few pioneers. In this article we present an over-
view of the advantages and limitations of multiphoton mi-
croscopy as applied to in vivo imaging. We also review
specific examples of the application of in vivo multiphoton
microscopy to studies of physiology and pathology in a
variety of organs including the brain, skin, skeletal muscle,
tumors, immune cells, and visceral organs.
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Introduction

Most biomedical research involves studies of cul-
tured cells. However, scientists are increasingly
aware that these simple, tractable experimental

systems necessarily lack biological relevance for many
questions. In the process of immortalization, cultured cells

lose many of their in vivo characteristics. In addition, it is
impossible to reproduce the complex cellular and systemic
influences that determine cellular function in vivo. For these
reasons, researchers increasingly turn to studies of labora-
tory animals.

As described elsewhere in this issue, in vivo imaging
techniques such as magnetic resonance imaging (MRI),
positron emission tomography (PET), and computed tomog-
raphy (CT), all typically associated with clinical applica-
tions, have been adapted for small animal imaging and,
along with whole body optical techniques, have been used
to address fundamental issues of cell and organ physiology.
Pharmaceutical companies are also increasingly turning to
these technologies to evaluate the pharmacokinetics and
physiological effects of drugs under development (Massoud
and Gambhir 2003; Rudin and Weissleder 2003; Sinskey et
al. 2004a,b,c). When combined with specially engineered
imaging probes, these techniques are capable of character-
izing physiological processes (“functional imaging”) and
the tissue distribution of drugs and their targets (“molecular
imaging”).

However, the limited sensitivity and spatial resolution
of these techniques limit their ability to resolve critical
events that occur at cellular and subcellular levels. For ex-
ample, a PET signal derived from a 1-mm diameter volume
may reflect the behaviors of perhaps half a million cells of
various types. This level of resolution is insufficient to de-
fine and explain drug effects that are specific to particular
types of target cells. If we take the example of a drug with
renal toxicity, the mechanism of toxicity will be different
depending on whether the drug accumulates in cells of the
vascular system, glomerulus, proximal tubule, or distal tu-
bule. A PET image will not be able to resolve this distri-
bution. Indeed, to the degree that a drug accumulates in just
one of these cell types, its renal accumulation may not be
detectable at all. Similarly, MRI is frequently applied to
studies of vascular function but cannot characterize the
variations in vascular permeability that occur at the level of
single cells (Sutton et al. 2003), nor the variations in blood
flow that occur at the level of single capillaries (Sutton et al.
2003; Yamamoto et al. 2002). The limited resolution of
conventional forms of in vivo imaging renders them inca-
pable of characterizing many of the important biological
processes that are mediated at the scale of cells and organ-
elles. In the context of preclinical drug development, these
techniques are incapable of resolving the localized distribu-
tion and effects of drugs that are frequently critical to un-
derstanding their physiological actions and toxic side effects.
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In vivo fluorescence microscopy is an effective way to
address many of the compromises of studies of cultured
cells on one hand and studies of animals on the other. While
the volume of tissue that can be imaged by in vivo fluores-
cence microscopy is not as large as that obtained by con-
ventional in vivo imaging methods, the capability of in vivo
fluorescence microscopy to provide images in living ani-
mals at subcellular resolution in 1 second or less is a unique
advantage. Furthermore, the simultaneous imaging of mul-
tiple fluorophores makes fluorescence microscopy uniquely
capable of multiparameter imaging, supporting powerful
correlative analyses. Additionally, similar to the conven-
tional forms of in vivo imaging, in vivo fluorescence mi-
croscopy can be used to image an animal longitudinally
(i.e., before and after an intervention), which enables the
collection of within-animal control data and reduces the
number of animals needed for a given analysis.

Scientists have performed in vivo microscopy for nearly
200 years (Cohnheim 1889; Ghiron 1912; Steinhausen and
Tanner 1976; Wagner 1839), but its capabilities have sig-
nificantly advanced with the recent development of multi-
photon microscopy (Denk et al. 1990; and as reviewed in
Denk and Svoboda 1997; Dunn and Young 2006; Zipfel et
al. 2003b). This technique, which depends on the simulta-
neous absorption of two infrared photons by a fluorophore,
resulting in spatially localized fluorescence excitation, is
capable of collecting high-resolution (0.4 microns) fluores-
cence images hundreds of microns into tissues (Centonze
and White 1998; Theer et al. 2003). In addition to providing
better penetration and resolution than traditional methods of
microscopy, the use of infrared light also makes multipho-
ton microscopy significantly less toxic to mammalian cells
(Squirrell et al. 1999).

In providing the capability for collecting fluorescence
images of living animals at a subcellular resolution, in vivo
multiphoton microscopy has revolutionized the way that
biomedical researchers can study physiology, pathophysiol-
ogy, and drug action. While some cases require minor sur-
gery to gain access (for example, to internal organs), in
many cases it is possible to conduct the imaging from out-
side the body, with little or no surgical manipulation. In the
next section we present a review of applications of this
technology in biomedical research.

Applications of in Vivo
Multiphoton Microscopy

Brain Function

Understanding the function of the brain is possible only in
the context of the intact organ, including the vascular sys-
tem and the network of intercellular connections. Thus it is
not surprising that neuroscientists have been some of the
earliest adopters of multiphoton microscopy for in vivo im-
aging (reviewed in Svoboda and Yasuda 2006). Indeed,
Winfried Denk, one of the inventors of multiphoton micros-

copy, participated in the first example of in vivo multipho-
ton microscopy (Svoboda et al. 1997). In this study,
investigators labeled layer 2/3 pyramidal neurons with a
calcium-sensitive fluorescent probe, and conducted multi-
photon microscopy through a cover glass attached to the
brain of an anesthetized rat, following a craniotomy. These
studies elegantly demonstrated a close correlation between
neuronal calcium transients and sodium-dependent action
potentials, as detected with intracellular voltage measure-
ments. This group described a similar approach in a second
publication (Helmchen et al. 1999), demonstrating the pres-
ence of dendritic calcium transients in deep-layer pyramidal
neurons.

More recently, in vivo multiphoton microscopy has
been an effective way to identify distinct calcium dynamics
in astroglia and neuronal networks (Nimmerjahn et al. 2004)
as well as in astrocytes that correlate with neural activity,
suggesting neuron-glia communication (Hirase et al. 2004b;
Wang et al. 2006). Stosiek and colleagues (2003) developed
a method for labeling large numbers of neurons in vivo and
used it to characterize entire networks of neurons. This
study demonstrated that whisker stimulation resulted in ex-
citing a subset of layer 2/3 neurons in mice.

The injection of bulk fluorescent tracers into the vascu-
lature facilitates the monitoring of blood flow, which is
critical to brain function. The dynamic regulation of blood
flow was suggested by the studies of Kleinfeld and col-
leagues (1998), who found cortical blood flow to be highly
variable, even reversing in direction in some capillaries, and
sensitive to stimulation. Chaigneau and colleagues (2003)
obtained similar results in studies of the olfactory bulb,
where capillary blood flow varied according to odor stimu-
lation, in fact mapping closely to regions of synaptic acti-
vation. Takano and colleagues (2006) elegantly
demonstrated the potential role of astrocytes in this process.
These investigators found that the release of calcium in
astrocytes, via photolysis of caged calcium, decreased both
the diameter and blood flow in the associated blood vessels,
suggesting that astrocytes may control local blood flow by
mediating vasodilation.

In addition to providing better penetration into tissues,
multiphoton microscopy can be much less injurious to bio-
logical tissues than other forms of fluorescence microscopy
(Squirrell et al. 1999). Accordingly, multiphoton micros-
copy is useful for repeatedly collecting images from the
same living tissue over periods of hours and even for sup-
porting longitudinal studies of animals over a period of days
to months. This capability has been widely utilized to ana-
lyze the dynamics of neurons, typically labeled by trans-
genic expression of green fluorescent protein (GFP), over
multiple time scales.

A reorganization of neural networks, involving a net
decline in the number of synapses, generally accompanies
neural development. In vivo multiphoton microscopy stud-
ies have associated this decline with age-dependent differ-
ences in dendritic spine dynamics. Grutzendler and
colleagues (2002) observed that dendritic spines are highly
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dynamic in layer 5 pyramidal neurons of the visual cortex of
young mice, with the majority of these dynamic events re-
sulting in spine loss. In contrast, extended longitudinal stud-
ies of adult mice (over periods of up to 4 months)
demonstrated that the great majority of spines in adult mice
are stable, with a half-life of over 13 months. These studies
suggest that dendritic spine turnover underlies the remod-
eling in the visual cortex during development. Holtmaat and
colleagues (2005) obtained similar results in studies of the
somatosensory cortex of mice, although these authors also
identified significant spine turnover even in adult mice, sug-
gesting that neurons of the somatosensory cortex may retain
their plasticity longer than those of the visual cortex.

Protracted studies, involving repeated imaging of the
same tissues over a period of months, have demonstrated
that while neuronal branching patterns are relatively stable
in adult animals, dendritic growth and remodeling continue,
involving a process of extension and retraction of existing
branches that occurs on a time scale of days (Lee et al.
2006). Similarly, axonal remodeling continues. Stettler
and colleagues (2006) imaged axons in the primary visual
cortex over a period of several weeks and found that
new branches appeared and disappeared each week, sug-
gesting an ongoing process of synaptic remodeling.
De Paola and colleagues (2006) presented similar results,
and also determined that axonal remodeling varied with cell
type.

A number of studies have evaluated the role of experi-
ence in neural remodeling. Whereas, as described above,
brain development is normally associated with a net decline
in the number of synapses, Zuo and colleagues (2005) ob-
served that sensory deprivation, accomplished by trimming
the whiskers of mice, reduced the rate of spine elimination,
thus blocking the normal decline in dendritic spine density
in mouse barrel cortex neurons during development. Lend-
vai and colleagues (2000) demonstrated that dendritic
spines are highly dynamic, at a temporal scale of minutes, in
rat barrel cortex. However, spine motility was significantly
reduced in sensory-deprived rats, suggesting that sensory
experience may influence dendritic plasticity and thus neu-
ral circuit reorganization. There is also evidence that sen-
sory deprivation increases turnover of dendritic spines in
mouse barrel cortex (Trachtenberg et al. 2002). In contrast
to these studies, Mizrahi and Katz (2003) demonstrated that
apical dendrites of olfactory bulb macrophage/primary T
(M/T) cells are highly stable over periods of days to weeks,
even under a variety of different olfactory conditions, and
suggested that stability may be important for maintaining a
structural scaffold of the neural circuitry.

Multiple studies investigating the consequences of dif-
ferent kinds of injury to the brain have applied in vivo
multiphoton microscopy. Research indicates that experi-
mentally induced epileptic foci increase local blood blow
(Hirase et al. 2004a), but that even extended protracted neo-
cortical seizures have undetectable effects on dendritic mor-
phology (Rensing et al. 2005). Two simultaneously
published studies (Davalos et al. 2005; Nimmerjahn et al.

2005) demonstrated the role of microglia in immune sur-
veillance in the brain, noting that microglia, while highly
active under normal conditions, rapidly deploy to sites of
injury. Davalos and colleagues (2005) also demonstrated
that adenosine triphosphate (ATP) mediates this migration,
and found that the injury-induced microglial migration
could be reproduced by local addition of ATP, and blocked
in animals treated locally with an ATPase. A similar study
conducted by Kim and Dustin (2006) found that whereas
injury outside the blood-brain barrier resulted in leukocyte
infiltration, injury inside the blood-brain barrier did not,
unless the vasculature itself was damaged. Instead, microg-
lia and astrocytes cooperatively mounted an immune re-
sponse inside the blood-brain barrier.

An especially fruitful application of in vivo multiphoton
microscopy to neural research has been in the study of Alz-
heimer’s disease, pioneered by Bradley Hyman (2001).
Combining transgenic models of Alzheimer’s disease with
novel methods for fluorescent labeling of amyloid plaques,
researchers have been able to exploit the ability of in vivo
microscopy to evaluate functional and morphological con-
sequences of amyloid deposition (see review in Skoch et al.
2005).

Using a transgenic mouse model that expresses the hu-
man amyloid precursor protein, Kimchi and colleagues
(2001) labeled amyloid deposits with thioflavine S and
evaluated their effect on the vasculature of the brain, labeled
with fluorescent dextran. These studies demonstrated that
amyloid angiopathy initiates adjacent to branch points in the
vasculature, with vessel dilation associated with amyloid
deposition. Longitudinal studies of individual animals over
periods of up to 5 months demonstrated that amyloid
plaques, once formed, are remarkably stable, suggesting
that growth is regulated by a feedback mechanism (Christie
et al. 2001).

Tsai and colleagues (2004) used multicolor multiphoton
microscopy of mice whose neurons were labeled with either
1,1�-dioctadecyl-3,3,3�,3�-tetramethylindocarbocyanine
perchlorate (DiI) or yellow fluorescent protein (YFP) to
demonstrate that amyloid deposits have toxic effects on
nearby dendrites and axons. In a similar study Spires and
colleagues (2005) evaluated the effect of amyloid plaques,
labeled via intravenous injection of methoxy-X04 (Klunk et
al. 2002), on neurons expressing GFP. Extended imaging
over periods of weeks demonstrated that amyloid plaques
disrupted neurites and reduced the density of dendritic
spines, even in dendrites not in contact with plaques.

Longitudinal studies have been used to evaluate the ef-
fect of immunotherapy on amyloid plaques. Using a trans-
genic mouse expressing YFP in neurons, Brendza and
colleagues (2005) demonstrated that treatment of mice with
an antiamyloid antibody reduced neurite dystrophy over a
period of 3 days. A similar study by Prada and colleagues
(2007) verified that antibody treatment decreased the size of
arterial plaques, but found that chronic administration was
necessary for a robust, lasting effect.
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Skin Structure and Function

Easy accessibility to the skin makes it a logical target for in
vivo imaging by multiphoton microscopy. Consequently,
many of the earliest applications of multiphoton microscopy
to in vivo imaging focused on studies of skin structure and
physiology (Masters et al. 1997, 1998). Autofluorescence
from endogenous compounds in the skin, including nicotin-
amide adenine dinucleotide phosphate (NADPH) and elas-
tin, coupled with second harmonic generation from collagen
fibers allows the examination of skin structure by multipho-
ton microscopy without exogenously administered fluores-
cent probes (Chen et al. 2006; Laiho et al. 2005; Masters et
al. 1997). On the other hand, a potential drawback of uti-
lizing multiphoton microscopy in the examination of living
skin is that absorption of single-photon infrared light by
melanin granules present at the dermal-epidermal junction
can cause dermal-epidermal cavitation and injury to the
skin. However, refinements in the delivery of the excitation
laser pulses have been demonstrated to mitigate this poten-
tial injury (Masters et al. 2004). Multiphoton microscopy is
therefore well suited to provide a noninvasive “optical bi-
opsy” of the skin to examine alterations in skin structure and
function.

Despite the ease of accessibility to the skin, most pub-
lished studies employing multiphoton imaging have utilized
ex vivo skin preparations, skin tissue models, or fixed bi-
opsy specimens. Included among the many research appli-
cations in this setting are examinations of skin injury and
wound healing (Hanson and Clegg 2005; Torkian et al.
2004; Werrlein and Madren-Whalley 2003), the biological
response and efficacy of needle-free delivery systems for
vaccines, genetic material, and pharmaceuticals (Mulhol-
land et al. 2004, 2006; Raju et al. 2006; Stracke et al. 2006),
and the transdermal diffusion of pharmaceuticals (Sun et al.
2004; Yu et al. 2002, 2003a,b). But these applications are
just as well suited for true in vivo imaging of the skin by
multiphoton microscopy. Indeed, researchers have applied
multiphoton microscopy noninvasively in mice to examine
wound healing (Navarro et al. 2004) and cell migration in
the skin (Flesken-Nikitin et al. 2005). Furthermore, the po-
tential utility of in vivo examination of the skin by multi-
photon microscopy has inspired commercial development
of a device for the diagnosis and assessment of dermato-
logical conditions in the clinical setting (Konig and Rie-
mann 2003). The real-time application of this technology
may prove to be an important adjunct to the screening,
diagnosis, and therapy of a variety of dermatological con-
ditions such as skin cancer (Lin et al. 2006).

Skeletal Muscle Structure and Function

The exposure of skeletal muscle through a simple incision
in the skin provides excellent accessibility for in vivo im-
aging by multiphoton microscopy. Several studies have uti-
lized a preparation exposing the tibialis anterior muscle in

mice. This preparation has been effective for examining
skeletal muscle morphology and mitochondrial metabolic
function (Rothstein et al. 2005), localizing Ca2+ uptake tran-
sients during contraction (Rudolf et al. 2004), and studying
the shuttling of nuclear factor of activated T cells (NFAT) in
skeletal muscle (Tothova et al. 2006). The latter two studies
employed transient transfection of the tibialis anterior
muscle to introduce fluorescent probes into the muscle for
examination of cellular processes by multiphoton micros-
copy. Stockholm and colleagues (2005) transfected the
same muscle with fluorescent calpain sensors and combined
this with in vivo multiphoton microscopy and fluorescence
resonance energy transfer (FRET) imaging to examine the
kinetics of calpain activation at the cellular level in living
mouse muscle.

Tumor Biology

The study of tumor biology is especially well suited to in
vivo microscopy. Tumors can be implanted in subcutaneous
locations that are easily accessible for microscopy after an
incision in the overlying skin. Using fluorescent probes, it is
easy to label both tumor cells and the cells that interact with
them. Whereas early studies using wide-field microscopy
were limited to relatively thin samples (e.g., Wood 1958),
multiphoton microscopy has enabled imaging deep into tu-
mors, supporting evaluations of angiogenesis, perfusion,
drug delivery, and the behaviors of cancer cells and their
interactions with immune cells (reviewed in Brown et al.
2001; Condeelis and Segall 2003).

The laboratory of John Condeelis has made extensive
use of in vivo microscopy, first using confocal microscopy
(Farina et al. 1998; Wyckoff et al. 2000) and later using
multiphoton microscopy (Wang et al. 2002; Wyckoff et al.
2004, 2007; Xue et al. 2006), to gain seminal insights into
the behavior of cancer cells during metastasis. In each of
these studies, microscopic observation of individual cells
has been uniquely capable of revealing the cellular pro-
cesses underlying the entry of metastatic tumor cells into the
vasculature. Wang and colleagues (2002) determined that
metastatic tumor cells are characterized by more directed
motility than nonmetastatic cells, and that this motility fre-
quently involves migration along collagen fibers and blood
vessels. Wyckoff and colleagues (2004) determined that
metastatic cell motility and entry into the vasculature ap-
pears to be based on directional movement of tumor cells
toward growth factors. Wyckoff and colleagues (2004,
2007) demonstrated that migration of tumor cells into the
vasculature is facilitated by interactions with macrophages.

In vivo multiphoton microscopy has provided crucial
insights into the dynamic in vivo interactions between im-
mune cells and tumor cells. Mrass and colleagues (2006)
observed that tumor-infiltrating lymphocytes migrate ran-
domly within subcutaneous tumors in mice, but form long-
lasting contacts with antigen-containing tumor cells. These
lymphocytes were also observed to physically interact with
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macrophages, suggesting the possibility of antigen cross-
presentation between lymphocytes and macrophages. Bois-
annas and colleagues (2007) extensively characterized the
interactions between cytotoxic T lymphocytes and antigen-
bearing tumor cells in subcutaneous tumors of mice. Cyto-
toxic T lymphocytes migrate within tumors until they
encounter living, antigen-expressing tumor cells, at which
point they arrest in contact with the tumor cell.

Immune Cell Biology

In vivo microscopy has been used since the 19th century to
study leukocyte behavior in experimental animals
(Cohnheim 1889; Wagner 1839). More recently, studies
conducted over the last 30 years have resulted in a model of
immune cell trafficking based on selective adhesion and
migration into target tissues (reviewed in Mempel et al.
2004). Multiphoton microscopy has extended the reach of
these studies, permitting analyses of immune cell trafficking
and interactions deep within tissues, particularly lymph
nodes (reviewed in Cahalan and Parker 2005; Germain et al.
2005).

While most studies of immune cell trafficking have in-
volved analyses of explanted lymph nodes, a number have
used intact, living animals in which lymph nodes are sur-
gically exposed. The first use of multiphoton microscopy to
analyze immune cell trafficking in lymph nodes in living
animals was presented by Miller and colleagues (2003),
whose analysis of 3-dimensional T-cell migration in mouse
lymph nodes suggested a stochastic rather than directed
search process. Mempel and colleagues (2004) used in vivo
multiphoton microscopy to identify three sequential stages
of T-cell behaviors after entering mouse lymph nodes, be-
ginning with multiple, brief encounters with dendritic cells,
followed by formation of persistent contacts with dendritic
cells, culminating in a final stage of rapid motility and pro-
liferation. Similar studies by Shakhar and colleagues (2005)
likewise detected extended contacts between dendritic cells
and newly arrived T cells, which are seen as a critical de-
terminant of T-cell activation in vivo. In contrast to T cells,
natural killer cells showed limited motility in the lymph
nodes of mice, and interacted with dendritic cells even in the
absence of an immune response (Bajenoff et al. 2006).

Two recent studies have used in vivo multiphoton mi-
croscopy to elucidate the effects of regulatory T cells, which
modulate the immune response, on T-cell behavior in lymph
nodes. Mempel and colleagues (2006) found that the pres-
ence of regulatory T cells reduces the killing of antigen-
presenting target cells by cytotoxic T lymphocytes. Studies
by Tadokoro and colleagues (2006) suggest that reduced
killing may result from the effect of regulatory T cells on
interactions between T cells and dendritic cells. In vivo
multiphoton microscopy of mouse lymph nodes demon-
strated that the presence of regulatory T cells increased the
motility of cytotoxic T cells and shortened the period of
contact between T cells and antigen-containing dendritic

cells. Consequently, cytotoxic T cells have diminished op-
portunity to contact and kill targeted cells.

Most in vivo studies of immune cell behavior have in-
volved analyses of cellular behaviors and interactions in
lymph nodes. However, Cavanagh and colleagues (2005)
have conducted in vivo studies of bone marrow, demon-
strating that dendritic cells home to bone marrow cavities,
where they form antigen-dependent contacts with central
memory T cells.

Visceral Organ Structure and Function

While multiphoton microscopy has been utilized to examine
organ structure and physiology in a variety of visceral or-
gans ex vivo, the vast majority of in vivo imaging of vis-
ceral organs by multiphoton microscopy has been
performed in studies of the kidney. Progress in applying this
technology to imaging the kidney is in part due to (1) the
relative ease of creating a surgical window to obtain access
for presentation of the objective lens to the kidney and (2)
the ability to largely isolate the kidney from excessive mo-
tion artifact. Barriers in getting the objective lens to deep
visceral organs like the pancreas or in overcoming motion
artifact in organs like the lung and heart have impeded rapid
advances in the application of multiphoton microscopy for
in vivo imaging of those organs as compared to the kidney.
Nevertheless, these barriers are not insurmountable:
progress in the design of objectives, fiber-optical devices,
and techniques for synchronizing image collection with bio-
logical functions will expand the application of multiphoton
microscopy for in vivo imaging.

The following sections focus on studies that have used
multiphoton microscopy for the in vivo imaging of visceral
organs. However, in the case of visceral organs for which
such studies are sparse, we cite selected studies that have
utilized multiphoton microscopy for imaging ex vivo organ
preparations, to give an appreciation of the potential utility
of multiphoton microscopy.

Kidney

Studies by Dunn and colleagues (2002) and later by Kang
and colleagues (2006) have demonstrated the broad appli-
cation of multiphoton microscopy for imaging kidney mor-
phology and physiology in living animals. Furthermore, the
development of technology to engineer and express fluores-
cent protein chimeras in animals has dramatically increased
the potential for the application of in vivo multiphoton mi-
croscopy to evaluate the function and responses of particu-
lar proteins in the kidney. This application has been
exploited in transgenic animals, which stably express fluo-
rescent protein chimeras, and in the use of micropuncture
techniques to introduce vectors containing constructs of
fluorescent protein chimeras for transient expression (Tan-
ner et al. 2005).

More specific applications of multiphoton micros-

70 ILAR Journal

 by guest on January 8, 2017
http://ilarjournal.oxfordjournals.org/

D
ow

nloaded from
 

http://ilarjournal.oxfordjournals.org/


copy—to examine the dynamic flow in the juxtaglomerular
interstitium (Rosivall et al. 2006), to quantify the relative
rates of glomerular filtration and tubular reabsorption in a
single nephron (Yu et al. 2005, 2007), and to analyze the
transport of organic anions (Tanner et al. 2004)—have pro-
vided key insights into the underlying physiology of the
kidney. In these studies, in vivo multiphoton microscopy
provided cellular and subcellular resolution in a dynamic
setting that was critical to understanding the underlying pro-
cess at a level of analysis that could not be achieved by
other current imaging methods.

In vivo imaging by multiphoton microscopy has also
facilitated progress toward understanding the pathophysiol-
ogy of kidney injury in various animal models. Ischemic
and septic models of acute kidney injury, with the use of in
vivo multiphoton microscopy, have enabled fundamental
insights into alterations of tubular function (Gupta et al.
2007), cellular apoptosis and necrosis (Kelly et al. 2003),
trafficking of leukocytes and mesenchymal stem cells
(Gupta et al. 2007; Kelly et al. 2004; Sutton et al. 2005;
Togel et al. 2005), tubular cell uptake of endotoxin (El-
Achkar et al. 2006), and microvascular blood flow and per-
meability (Gupta et al. 2007; Sutton et al. 2003, 2005).
Multiphoton microscopy has also been exploited to provide
important contributions to understanding folate uptake and
trafficking in the kidney (Sandoval et al. 2004), as well as
cellular and tissue responses to Escherichia coli urinary
tract infection in living animals (Mansson et al. 2007). A
recent study challenged the current understanding of glo-
merular filtration and tubular uptake of albumin by utilizing
in vivo multiphoton microscopy to reveal a 50-fold greater
value for the glomerular sieving coefficient of albumin than
what has been accepted based on more invasive studies
(Russo et al. 2007).

Other Visceral Organs

Like the kidney, the liver is readily accessible for in vivo
imaging. However, given the liver’s subdiaphragmatic lo-
cation, isolation from motion artifact caused by respiration
requires particular attention. Liu and colleagues (2007) uti-
lized multiphoton microscopy to monitor hepatocyte uptake
and biliary excretion of the organic anion 6-carboxyfluores-
cein diacetate, demonstrating the power of this technique to
examine in vivo hepatobiliary physiology and metabolism.
Multiphoton microscopy has also been applied to ex vivo
preparations of liver to examine fibrosis following chemical
injury (Lee et al. 2004) and to demonstrate the importance
of myosin II and Gal-GalNAc lectin on the pathogenicity of
Entamoeba histolytica during hepatic abscess formation
(Coudrier et al. 2005). Additionally, multiphoton micros-
copy coupled with third harmonic generation has been ef-
fective in examinations of lipid metabolism in liver sections
isolated from regenerating livers after partial hepatectomy
(Debarre et al. 2006).

Using simple surgical techniques, the intestine is also
easily accessible for in vivo imaging. However, many of the

biological processes of interest in the intestine take place on
the luminal side of the intestine and thus are beyond the
working distance of multiphoton microscopy when an ap-
proach is taken from the serosal side of the intact intestine.
Watson and coworkers (2005) bypassed this obstacle by
opening a tiny segment of the small intestine in order to
present the mucosal side of the intestine to the objective
lens. They used this preparation to study the mechanisms
involved in epithelial shedding and permeability barrier
maintenance during epithelial cell shedding.

The pancreas, like the kidney, has a retroperitoneal lo-
cation. However, unlike the kidney, it is difficult to create a
retroperitoneal approach (or an abdominal approach) to the
pancreas for imaging. Consequently, the application of mul-
tiphoton microscopy to examine dynamic processes in the
pancreas has generally been limited to ex vivo preparations
of exocrine pancreatic acini and islets. Nonetheless, re-
searchers have used multiphoton microscopy to make im-
portant contributions toward understanding the physiology
of insulin secretion by pancreatic islets (Bennett et al. 1996;
Fukui et al. 2005; Hatakeyama et al. 2006; Kasai et al. 2005;
Miura et al. 2006; Piston et al. 1999; Takahashi et al. 2002,
2004) and exocytosis by pancreatic acini (Dolman et al.
2005; Nemoto et al. 2001). Bertera and colleagues (2003)
have developed an interesting approach to this problem by
transplanting islet cells under the kidney capsule to facilitate
in vivo imaging by multiphoton microscopy.

As mentioned above, the normal movements of the heart
and lungs in a living animal have been an impediment to the
application of multiphoton microscopy as a tool for the in
vivo imaging of these organs. But the procedure has been a
useful tool for examining mitochondrial function, physi-
ological coupling, and Ca2+ signaling transients of cardio-
myocytes in nonbeating, Langendorff-perfused hearts
(Matsumoto-Ida et al. 2006; Rubart et al. 2003a,b). In ex
vivo preparations of lung, multiphoton microscopy has also
provided key insights into Ca2+ signaling of bronchial
smooth muscle cells (Bai et al. 2007; Bergner et al. 2006),
matrix structure (Debarre et al. 2006), matrix remodeling
during fibrosis (Pena et al. 2007), and metastatic tumor cell
extravasation (Voura et al. 2004).

Limitations to in Vivo
Multiphoton Microscopy

As described above, in vivo multiphoton microscopy has
made substantial contributions to our understanding of mul-
tiple physiological and disease processes. However, the
technology of this research approach is still relatively im-
mature and several technical challenges hamper the realiza-
tion of its full potential.

Introduction of Fluorescent Probes into Cells
in Animals

The first challenge for in vivo fluorescence microscopy con-
cerns the need to generate contrast through fluorescence.
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While investigators have made productive use of the fluo-
rescence of endogenous proteins, such as NAD(P)H (Mas-
ters et al. 1998; Piston et al. 1995; Rothstein et al. 2005;
Zipfel et al. 2003a; Zoumi et al. 2002) and elastin (Konig
and Riemann 2003; Zoumi et al. 2004), the utility of en-
dogenous fluorescence is limited by the small number of
molecules with significant fluorescence. Thus in vivo fluo-
rescence microscopy generally requires fluorescent labeling
of specific cells or compartments. In some cases, for ex-
ample labeling the blood volume with fluorescent dextran,
this can be accomplished by simple intravenous injection of
probes (e.g., Brown et al. 2001; Dunn et al. 2002; Kleinfeld
et al. 1998). Intravenously injected Hoechst dye 33342 ef-
ficiently labels cells throughout the body, and rhodamine
6G labels circulating leukocytes and endothelial cells (Dunn
et al. 2002). The direct injection of probes into individual
cells is a laborious process best suited to small numbers of
cells, but it has nonetheless been useful for measuring cal-
cium dynamics in neurons (Helmchen et al. 1999; Svoboda
et al. 1997). Local administration of membrane-permeant
acetoxymethyl esters enables the labeling of a larger num-
ber of cells and has also been used to introduce calcium-
sensitive probes into neurons (Garaschuk et al. 2006; Hirase
et al. 2004b; Nimmerjahn et al. 2004; Stosiek et al. 2003).
However, the instability of acetoxymethyl esters in the se-
rum after intravenous injection (Jobsis et al. 2007) limits
their in vivo utility.

In general, the specific labeling of cells in vivo with
exogenous probes is challenging. One solution to the prob-
lem is to use transgenic animals that express fluorescent
proteins in specific types of cells (e.g., Brendza et al. 2005;
Nimmerjahn et al. 2004; Wyckoff et al. 2004), or to study
animals transplanted with cells that express fluorescent pro-
teins (e.g., Mempel et al. 2006). Viral infection (Dittgen et
al. 2004; Tanner et al. 2005) and in vivo transfection are
also effective methods of accomplishing the expression of
fluorescent proteins in experimental animals, although these
techniques require special methods to ensure the stability
and efficient expression of the gene. The potential of fluo-
rescent protein technology in in vivo microscopy remains to
be fully realized, as new methods for introducing and ex-
pressing genes are devised, and new fluorescent indicators
are developed and expressed in animals.

While we have focused in this review on multiphoton
fluorescence microscopy, we note that alternative nonlinear
processes are also effective for generating contrast in in
vivo microscopy, including second harmonic imaging
(Brown et al. 2003; Zipfel et al. 2003a; Zoumi et al. 2002)
and coherent anti-Stokes Raman scattering (CARS) micros-
copy (Evans et al. 2005). Significantly, both of these tech-
niques generate contrast using signals from endogenous
molecules, without the need for targeted probes. However,
much like the use of endogenous autofluorescence, these
techniques are limited by the number of structures that are
capable of generating sufficient signal. For example, colla-
gen provides one of the only molecules whose structures are

sufficiently ordered for second harmonic imaging, and the
spatial heterogeneity and Raman response of lipids make
them much easier to image than proteins or nucleic acids
(Evans et al. 2005).

Depth of Imaging by Multiphoton Microscopy

Under the best circumstances, the working distance of the
microscope objective limits the depth to which images may
be obtained by multiphoton microscopy. However, despite
the fact that multiphoton microscopy is better suited to
deep-tissue imaging than any other form of optical micros-
copy, signals nonetheless attenuate with depth. Thus, the
effective reach of multiphoton microscopy is typically no
more than 150 microns in the living kidney (our unpub-
lished observations), and no more than 1,000 microns in the
case of brain tissue (Theer et al. 2003).

Some of the signal lost at depth results from absorbence
and scattering of fluorescence emissions. Scattering is par-
ticularly significant in the imaging of biological tissues
(Cheong et al. 1990). For instance, calculations indicate that
the light-scattering properties of the brain result in the scat-
tering of nearly all emissions arising from a point 100 to 200
microns into brain tissue (Helmchen and Denk 2005). Under
these conditions the objective collects light from what is
essentially a diffusely glowing surface of the tissue. The
effects of scattering are somewhat mitigated by the use of
large-area detectors, in some cases placed on either side of
the sample, to collect fluorescence emissions in multiphoton
microscopy. The efficient collection of scattered fluores-
cence is one of the major advantages of multiphoton
microscopy.

The attenuation of signal with depth also results from
scattering and absorbence of the laser illumination. Al-
though this attenuation is reduced by the use of near-
infrared light that falls in the range of the “optical window”
of biological tissue, in which both absorbence and scattering
are minimized, the effect of illumination attenuation is mag-
nified by the fact that fluorescence is quadratically related to
illumination; thus a halving of illumination reduces fluores-
cence fourfold. These losses can be reclaimed by increasing
laser power with depth. However, the effect of the increased
illumination on the surface of the sample limits the efficacy
of this solution. It is not useful to increase illumination to
the point that it either induces damage at the surface of
tissue or excites sufficient fluorescence at the surface to
obscure fluorescence at the focal point (Theer and Denk
2006).

Finally, the quadratic dependence of fluorescence exci-
tation on illumination makes multiphoton microscopy espe-
cially sensitive to factors that distort the shape of the focal
spot. A primary factor here is spherical aberration. Since the
refractive index of biological tissue generally differs from
that of the immersion medium of the objective lens, the
peripheral and paraxial rays of illumination focus to differ-
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ent points in the sample. This effect, which increases with
depth, broadens the focal spot, thus reducing fluorescence
excitation. An adaptive optics system can reduce the effects
of this distortion (Booth et al. 2002; Sherman et al. 2002),
but this solution is not yet widely available.

Speed of Imaging by Multiphoton Microscopy

The ability to collect images from living animals raises the
question of the capability of multiphoton microscopy for
dynamic imaging. Rapid image collection is a necessity for
in vivo microscopy as it can minimize the effects of move-
ment, an inevitable consequence of in vivo microscopy that
can seriously compromise image quality (Rothstein et al.
2006). Image formation in multiphoton microscopy, like
confocal microscopy, is a laser scanning imaging technique,
in which the fluorescence image emerges as the laser scans
across the sample. Most multiphoton microscope systems
scan a single point of illumination across the sample; for a
512 × 512 pixel image, this scanning results in image cap-
ture rates of one to two frames per second. Higher-speed
systems exist (Fan et al. 1999; Kim et al. 1999; Nguyen et
al. 2001; Padera et al. 2002), but because they increase
speed by shortening the interval of fluorescence collection
at each point, their utility is limited to samples with strong
fluorescence.

High-speed laser scanning microscopy can also be ac-
complished by “parallelizing” the illumination, such that
multiple points of illumination simultaneously stimulate
fluorescence from multiple points in the sample. This “tan-
dem scanning” approach can increase speed in proportion to
the number of illumination foci. But tandem scanning mi-
croscope systems are generally unsuited to thick tissues, as
the adjacent beams can interact with each other away from
the focus, resulting in the generation of background fluo-
rescence. In multiphoton microscopy, the temporal offset-
ting of the illumination beams by 250 to 1,000
femtoseconds resolves this problem by effectively eliminat-
ing the interaction of the beams (Andressen et al. 2001;
Egner and Hell 2000; Nielsen et al. 2001).

A larger problem is that fluorescence emissions are col-
lected onto an imaging detector, such as a charge-coupled
device (CCD). As discussed above, a primary advantage of
multiphoton microscopy is the ability to collect scattered
fluorescence photons with multiple detectors and to map the
scattered photons to a single point of fluorescence excitation
in the sample. This advantage vanishes when collecting
onto an imaging detector because scattered emissions no
longer contribute to the image of the fluorescent structure
but instead generate a diffuse background. In essence, the
scattered photons reduce the resolution and contrast of the
resulting image. Given the contribution of scattered photons
to image collection at depth, this presents a serious limit for
the utility of tandem scanning multiphoton microscopes for
in vivo imaging.

Future Prospects for in Vivo
Multiphoton Microscopy

In vivo multiphoton microscopy is a powerful technique
that brings the resolution previously associated only with
studies of cultured cells into the relevant context of the
whole organism. But the use of multiphoton microscopy,
although growing exponentially (Zipfel et al. 2003b), is still
largely driven by relatively few laboratories. Accordingly,
the foci of active application of in vivo multiphoton micros-
copy still have their roots in the research interests of the
original developers and “early adopters” of multiphoton mi-
croscopy. In the past few years, the technology of multi-
photon microscopy has developed to the point that
commercial systems are available that are as simple to use
as confocal microscopes. Thus it is reasonable to expect that
the next 10 years will see the proliferation of in vivo mul-
tiphoton microscopy to many more laboratories, and an ac-
celerated implementation of this powerful technology to
many more novel research questions. In addition, the devel-
opment of new methods for fluorescent labeling of cells in
animals, and new approaches to increase the depth and
speed of multiphoton fluorescence imaging, will further
spur the increased use of in vivo multiphoton microscopy.
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