Use of Digital Image Analysis For Studies of Renal Physiology

Edward J. Delp Video and Image Processing Laboratory (VIPER) School of Electrical and Computer Engineering School of Biomedical Engineering Purdue University West Lafayette, Indiana

O'Brien Workshop / VIPER

Acknowledgement

Our Team

- Kenneth Dunn IU Indiana Center for Biological Microscopy
- Paul Salama Department of Electrical and Computer Engineering – IUPUI
- Seth Winfree IU Indiana Center for Biological Microscopy
- Graduates Students (current and former) Kevin Lorenz, Neeraj Gadgil, Soonam Lee, David Ho, Chichen Fu, and Shuo Han

O'Brien Workshop / VIPER

Acknowledgement

 This work was supported by a George M. O'Brien Award from the National Institutes of Health NIH/NIDDK P30 DK079312 and the endowment of the Charles William Harrison Distinguished Professorship at Purdue University

O'Brien Workshop / VIPER

April 11, 2017

Our Project Goals

- Develop tools for microscopy image analysis and visualization e.g. registration, segmentation, nuclei detection
- Develop methods based on the latest approaches in image analysis and computer vision
- Develop tools that are "biologist aware" → semiautomatic approaches may be better than fully automatic methods

Slide 4

Motivation

- Fluorescence microscopy is a form of optical microscopy used to image/visualize subcellular structures in living cells or animals
- "Fluorescence" is the emission of light by the process of absorbing and releasing energy from fluorescent

Motivation

- The energy of a photon is inversely proportional to the wavelength $E = \frac{hc}{E}$
- Confocal microscopy uses $light^{\lambda}$ with shorter wavelengths
- Two-photon microscopy simultaneously excites fluorescent molecules with longer wavelengths
- Two-photon microscopy enables image/visualize in deeper tissue Vibrational

Image Data Volumes

- Two types of multiphoton microscopy image sets:
 - Three dimensional / volumetric / Z-series (progressively increasing tissue depths)
 - Time-series (progressively increasing time instances for single or multiple focal planes)
- Single-channel or multi-channel data sets

Challenges

- Image contrast decreases with depth in biological tissues due to increased light scattering and absorption
- Image resolution (spatial and temporal) and signal levels are decreased due to the need for high image capture rates necessary to image dynamic biological structures
- Segmentation results are very sensitive to small changes in parameters, causing the failure of typical image analysis/computer vision methods
- Objects have poorly defined edges (sparse, not rigid and continuous)

Slide 8

O'Brien Workshop / VIPER

Challenges

- So type automatic image analysis is necessary (size and complexity of image volumes make manual image analysis impractical) lack of ground truth data
- Image sets are frequently obtained from live specimens motion artifacts are introduced from respiration and heartbeat
- Data sets is corrupted with noise from a variety of sources and distributions

Challenges – Channel Crosstalk

Blue O'Brien Workshop / VIPER

April 11, 2017

Green

Red Slide 10

Notation

 I_{z_p,t_q,c_r} represents our images whose size is X × Y where z_p , t_q , c_r represents P focal slices, Q time samples, and R spectral channels where

4D Image Registration

O'Brien Workshop / VIPER

April 11, 2017

Acknowledgement

• The images used in this method for microscopy image registration were provided by Dr. Martin Oberbarnscheidt of the University of Pittsburgh and the Thomas E. Starzl Transplantation Institute

O'Brien Workshop / VIPER

April 11, 2017

Research Goal

• 4D immune cells taken from live rat kidney using two-photon microscopy

-X = 512, Y = 512, P = 11, Q = 61, R = 4

- Motion artifacts are generated during the data acquisition process due to animal's heart beating and respiration
- The goal is to minimize motion artifact both in the z direction and in time

Proposed Method

Slide 15

1D Interpolation

- 1D cubic convolution interpolation in Z direction to smooth the images
- After this process, the number of images in the z direction is increased from 11 to 41

Original z section image

Interpolated z section image

Slide 16

O'Brien Workshop / VIPER

3D B-Splines Non-Rigid Registration

- Images in the z direction are acquired serially
- Motion artifacts between images slices in z direction need to be removed
- Our 3D non-rigid registration technique is used on each 3D volume to remove the motion artifacts

3D Non-Rigid Registration

Original image XY

Registered image XY

Original image YZ

Registered image YZ

O'Brien Workshop / VIPER

April 11, 2017

Proposed Method

Slide 19

3D Gaussian Blur and Adaptive Histogram Equalization

- 3D Gaussian blur and adaptive histogram equalization (AHE) are used to create better defined biological structures in our images
 - A rectangular window with size of 17 × 17 × 9 is used in 3D
 Gaussian blur
 - Adaptive histogram equalization employs a rectangular window with size of 17 × 17 × 9

Original

Gaussian blur

AHE

Slide 20

O'Brien Workshop / VIPER

4D Rigid Registration

7 sample time points in XY and YZ views

A REAL PARTY OF THE PARTY OF TH

O'Brien Workshop / VIPER

CONTRACTOR OF STREET

April 11, 2017

Results

O'Brien Workshop / VIPER

April 11, 2017

Validation

3D Spherical Histograms of Motion Vectors

(e)

(f)

(g)

(j)

180250

90

(h)

1500 60

- (a) histogram of original volume in the view from top,
- (b) histogram of registered volume in the view from top,
- (c) histogram of original volume in the view from bottom,
- (d) histogram of registered volume in the view from bottom,
- (e) histogram of original volume in +XY view,
- (f) histogram of registered volume in +XY view,
- (g) histogram of original volume in -XY view,
- (h) histogram of registered volume in -XY view,
- (i) histogram of original volume in XZ view,
- (j) histogram of registered volume in XZ view.

Slide 24

O'Brien Workshop / VIPER

(i)

180250

Nuclei Segmentation

O'Brien Workshop / VIPER

April 11, 2017

Marked Point Process (MPP) + Midpoint Analysis

O'Brien Workshop / VIPER

April 11, 2017

Nuclei Segmentation: Our Proposed Method

Adaptive Thresholding

Goal: To separate foreground that represents biological entity

Let $I(t) \in [0,1]$ be the pixel intensity at pixel *t* of the image Thresholding function (Use local 3D information)

$$f_{Th}:[0,1] \to [-1,1] \qquad f_{Th}(t) = \begin{cases} \frac{I(t) - (\tau_t + \tau_c)}{1 - (\tau_t + \tau_c)} & \text{if } I(t) \ge (\tau_t + \tau_c) \\ -\frac{(\tau_t + \tau_c) - I(t)}{(\tau_t + \tau_c)} & \text{if } I(t) < (\tau_t + \tau_c) \end{cases}$$

 $τ_t$: Mean pixel intensity of the window $(w_{Th,x} × w_{Th,y} × w_{Th,z})$ at t
 $τ_c$: A positive constant used as a fixed additive threshold
 Voting function (Aggregate votes) f_v : [-1,1] → (-∞,∞)

 $f_{v}(t) = (f_{Th} * g_{v})(t)$ $g_{v}(x, y, z) = e^{-\frac{|x|^{2} + |y|^{2} + |z|^{2}}{a^{2}}} \text{ for window } (w_{v,x} \times w_{v,y} \times w_{v,z}) \text{ at } t$ Foreground Mask $S_{M} = \{t : f_{v}(t) \ge 0\}$

April 11, 2017

Midpoint Analysis

O'Brien Workshop / VIPER

April 11, 2017

Nuclei Segmentation Using Distance Function Optimization

• Goal: To estimate parameters of a single-object component

Single-object component

Bhattacharyya Distance *

Elliptical disk
$$\rho = (a, b, \theta)$$

 (μ_1, σ_1^2)
Outer ring $(a+1, b+1, \theta)$
 (μ_2, σ_2^2)
 $B(s, \rho) = \frac{1}{4}(\mu_1(s, \rho) - \mu_2(s, \rho))^2 \sqrt{\sigma_1^2(s, \rho) + \sigma_2^2(s, \rho)}$
 $-\frac{1}{2} \log(\frac{2\sigma_1(s, \rho)\sigma_2(s, \rho)}{\sigma_1^2(s, \rho) + \sigma_2^2(s, \rho)})$
 $(c_\lambda, \rho_\lambda) = \underset{s \in W_c, \rho \in P_\lambda}{\operatorname{arg max}} B(s, \rho)$

Object Configuration

 * T. Kailath, "The Divergence and Bhattacharyya Distance Measures in Signal Selection," *IEEE Transactions on Communication Technology*, vol. 15, no. 1, pp. 52-60, February 1967.
 O'Brien Workshop / VIPER April 11, 2017 Slide 30

Nuclei Segmentation Using Marked Point Process (MPP)

• Goal: To estimate parameters of a multiple-object component

Multi-object component

Γ : Object configuration

We use a 2D spatial point process approach based on a stochastic birth-anddeath dynamics *

We modify the energy function to include

- (1) Non-uniform brightness in an image
- (2) Improved object interaction

*X. Descombes, R. Minlos, and E. Zhizhina. "Object extraction using a stochastic birth-and-death dynamics in continuum," Journal of Mathematical Imaging and Vision, Vol. 33, No. 3, pp. 347-359, March 2009.

O'Brien Workshop / VIPER

April 11, 2017

Marked Point Process (MPP)

- **Object Energy** * $H_{Object}(s,\rho) = \begin{cases} \frac{1-B(s,\rho)}{T} & \text{if } B(s,\rho) \ge T\\ \frac{B(s,\rho)-T}{\sigma} & \text{if } B(s,\rho) < T \end{cases}$
 - How well does an object configuration fits the image data?
- Brightness Energy $H_{Brightness}(s) = \tau_s$

- Accounts for local mean brightness in the neighborhood of s

Therefore, birth energy * and birth rate * $H_B(s,\rho) = H_{Object}(s,\rho) + H_{Brightness}(s) \qquad b(s,\rho) = 1 + 9 \frac{\max(H_B(s,\rho)) - H_B(s,\rho)}{\max(H_B(s,\rho)) - \min(H_B(s,\rho))}$ **Cumulative** * $b_c(s) = \sum_{\rho \in P} b(s, \rho)$ Normalized * $b_n(s) = \frac{b_c(s)}{\max_{s \in \Lambda_M} b_c(s)}$

• **Overlap Energy** $*H_{Overlap}(s_1, s_2) = \max(0, 1 - \frac{||s_1, s_2||}{2r})$ • **Overlap Energy** ${}^{*}H_{Overlap}(s_1, s_2) = \max(0, 1 - \frac{||s_1, s_2||}{2r})$ • **Peak Energy** $H_{Peak}(s) = \begin{cases} -h_{\rho} & \text{if } \sum_{\rho \in P} b_c(s) \text{ has a local maxima at otherwise} \end{cases}$ Selectively Penalize Object Overlap

*X. Descombes, R. Minlos, and E. Zhizhina. "Object extraction using a stochastic birth-and-death dynamic in continuum," Journal of Mathematical Imaging and Vision, Vol. 33, No. 3, pp. 347-359, March 2009. O'Brien Workshop / VIPER April 11, 2017 Slide 32

Marked Point Process (MPP)

- (I) Determine $H_{Object}(s, \rho)$, $H_{Brightness}(s)$, $H_B(s, \rho)$, $b(s, \rho)$, $b_c(s)$, $b_n(s)$ and $H_{Peak}(s)$ for all $s \in \Lambda_M$ and $\rho \in P$
- (II) Parameter Initialization: Set the inverse temperature $\beta = \beta_0$ and the discretization step $\delta = \delta_0$
- (III) Configuration Initialization: Start with $\Gamma = \Gamma_0$ such that Γ_s^0 contains objects centered at *s* where $b_c(s)$ achieves local maxima and Γ_ρ contains their parameters $argmax_{\rho \in P}b(s, \rho)$ for each *s* respectively
- (IV) *Birth Step*: For each $s \in \Lambda_M$, if $s \notin \Gamma_s$ add a point at s with probability $\delta b_n(s)$ and give birth to an object of ρ with probability $\frac{b(s,\rho)}{\sum s^{b(s,\rho)}}$
- (V) Death Step: Sort the configuration of points Γ in descending order of $H_B(s,\rho)$. For each sorted point *s* obtain death rate $d(s,\rho) = \frac{\delta a(s)}{1+\delta a(s)}$, where $a(s) = e^{-\beta(H(\Gamma/\{s,\rho\})-H(\Gamma))}$ and kill the object with probability d(s)
- (VI) Convergence Test: If all the objects born in the *Birth Step* are killed in the *Death Step*, stop. Otherwise, increase β and decrease δ by geometric scheme using common ratios Δ_{β} and Δ_{δ} and go back to the *Birth Step*

X. Descombes, R. Minlos, E. Zhizhina,"Object extraction using a stochastic birth-and-death dynamics in *continuum,*" *Journal of Mathematical Imaging and Vision*, Vol. 33, No. 3, pp. 347-359, March 2009.

O'Brien Workshop / VIPER

April 11, 2017

Segmentation Results

Experimental Results: Comparison

MPP Method from [Ref]

N = 241

Our Proposed Method

 $\mathbf{N}=\mathbf{628}$

Average Processing Time: 20 times faster

[Ref] X. Descombes, R. Minlos, E. Zhizhina,"Object extraction using a stochastic birthand-death dynamics in continuum," *Journal of Mathematical Imaging and Vision*, Vol. 33, No. 3, pp. 347-359, March 2009.

O'Brien Workshop / VIPER

April 11, 2017

3D Active Contours with **Inhomogeneity Correction (3DacIC)**

O'Brien Workshop / VIPER

April 11, 2017
Introduction

- We propose a method (3DacIC) that segments 3D microscopy volumes based upon a combination of
 - -3D region-based active contours
 - 3D inhomogeneity correction

Slide 37

Energy Function of 3Dac

• 3Dac: Extension version of 2Dac such that

$$E = \lambda_1 \int_{in(\phi_{z_p})} \left| I_{z_p}^O(\mathbf{x}) - c_1 \right|^2 d\mathbf{x} + \lambda_2 \int_{out(\phi_{z_p})} \left| I_{z_p}^O(\mathbf{x}) - c_2 \right|^2 d\mathbf{x}$$

+ μ · Surface ($\phi_{z_p}(\mathbf{x})$) where $\mathbf{x} \in \Re^3$

- $-I^{O}_{z_{p}}(\mathbf{x})$: the p^{th} image in a volume to be analyzed where $p \in \{1, 2, ..., P\}$
- $-\phi_{z_p}(x)$: zero-level curve (Lipschitz function)
- $-c_{1,}c_{2}$: Mean intensities inside of $\phi_{z_{p}}$ and outside of $\phi_{z_{n}}$
 - Note that c₁ and c₂ are vectors with three elements
 (3 × 1 vectors)
- $-\lambda_1, \lambda_2, \mu$: Weight coefficients for each term

Proposed Energy Function (3DacIC)

- Utilizing Heaviside's function, $H(\cdot)$, the Dirac delta function, $\delta(\cdot)$ and swapping order of the integrals yields $E = \lambda_1 \int_{\Omega} \left((I^{O})^2 \circ 1_K - 2I^{O} \circ (W * K)c_1 + (W^2 * K)c_1^2 \right) H(\phi) d\mathbf{x}$ $+ \lambda_2 \int_{\Omega} \left((I^{O})^2 \circ 1_K - 2I^{O} \circ (W * K)c_2 + (W^2 * K)c_2^2 \right) (1 - H(\phi)) d\mathbf{x}$ $+ \mu \int_{\Omega} \delta(\phi) |\nabla \phi| d\mathbf{x}$
 - where * is 3D convolution operation and $1_K(x)$ is a 3D volume of same size as $I_{z_p}^o(x)$ whose entries are all 1 except near the volume boundary Ω
 - Note that $1_K(x)$ is obtained by convolving a 3D matrix of ones with 3D kernel K.
 - For brevity we have omitted the subscript z_p and the explicit argument x

O'Brien Workshop / VIPER April 11, 2017

Segmentation Results and Inhomogeneity Corrected Images at Various Depth for WSM Images

Results Comparison – Flipped Nuclei Stack A 7th Images (Red: Nuclei Contours, Green: Nuclei Regions)

Results Comparison – Flipped Nuclei Stack B 16th Images (Red: Nuclei Contours, Green: Nuclei Regions)

Accuracy - Type I and Type II Errors

- *TP*: Nuclei pixels correctly detected as nuclei pixels in segmented image
- *TN*: Background correctly detected as background in segmented image
- *FP*: Background wrongly detected as nuclei pixels in segmented image
- *FN*: Nuclei pixels wrongly detected as background in segmented image
- *Tot*: Total number of image pixels

$$Accuracy = \frac{TP + TN}{Tot}, \quad TypeI = \frac{FP}{Tot}, \quad TypeII = \frac{FN}{Tot}$$

$$O'Brien Workshop / VIPER \qquad April 11, 2017 \qquad Slide 43$$

Flipped Nuclei Stack A Blue 7th Image

	Accuracy	Туре І	Type II	
2Dac	54.7066%	43.3144%	1.9791%	
2Dlac	57.6168%	39.1350%	3.2482%	
2DacIC	2DacIC 73.1171%		1.7929%	
3Dac 79.7585%		16.6313%	3.6102%	
3Dsquassh	88.7196%	8.5674%	2.7130%	
3DacIC (Proposed)	91.8678%	5.6053%	2.5269%	

- Type-I error (False Alarm): False detection
- Type-II error (Missed): Missing detection

Flipped Nuclei Stack B Blue 16th Image

	Accuracy	Туре І	Type II	
2Dac	61.8896%	32.4192%	5.6911%	
2Dlac	58.2088%	31.5224%	10.2688%	
2DacIC	80.3520%	15.1890%	4.4590%	
3Dac	78.4348%	15.1447%	6.4205%	
3Dsquassh	85.3157%	5.9555%	8.7288%	
3DacIC (Proposed)	89.6511%	4.4998%	5.8491%	

- Type-I error (False Alarm): False detection
- Type-II error (Missed): Missing detection

Flipped Nuclei Stack A1 Blue 18th Image

	Accuracy	Туре І	Type II	
2Dac	57.3856%	38.9107%	3.7037%	
2Dlac	66.3521%	28.1330%	5.5149%	
2DacIC	2DacIC 86.1752%		2.5238%	
3Dac 72.8584%		24.9794%	2.1622%	
3Dsquassh	83.3508%	14.2776%	2.3716%	
3DacIC (Proposed)	87.7125%	9.4864%	2.8011%	

- Type-I error (False Alarm): False detection
- Type-II error (Missed): Missing detection

Flipped Nuclei Stack B1 Blue 18th Image

	Accuracy	Туре І	Type II	
2Dac	72.2759%	20.4388%	7.2853%	
2Dlac	63.4697%	27.4529%	9.0775%	
2DacIC	87.6350%	8.9874%	3.3775%	
3Dac 81.5754%		12.5660%	5.8586%	
3Dsquassh	83.2233%	13.0070%	3.7697%	
3DacIC (Proposed)	89.0999%	7.0015%	3.8986%	

- Type-I error (False Alarm): False detection
- Type-II error (Missed): Missing detection

3D Segmentation Results of Each Dataset (Green: Nuclei Regions)

- 3D visualization using Voxx
- Each dataset (WSM, Flipped Nuclei Stack A, and Flipped Nuclei Stack B) was cropped into subvolumes 60 × 60 × 20, respectively

WSM O'Brien Workshop / VIPER

Flipped Nuclei Stack A *April 11, 2017*

Flipped Nuclei Stack B Slide 48

2D⁺ Convolutional Neural Networks (CNN)

O'Brien Workshop / VIPER

April 11, 2017

Research Goal

• 25x-water-scale-mount (*wsm*) from rat kidney using twophoton microscopy

-X = 512, Y = 512, P = 512, Q = 1, R = 1

- Fluorescent molecules label nuclei
- The goal is to segment the nuclei

wsm I_{z70} April 11, 2017

O'Brien Workshop / VIPER

Proposed Method

Data Augmentation

- Water-scale-mount blue channel (512 images)
 - We have 11 groundtruth images
 - 10 images are used for data augmentation
- Elastic Deformation (faked shape)
- Gamma Correction (faked contrast)
- For each ground truth image:
 - First generated 100 images with faked shape
 - Second generated 10 more images with faked contrast on each faked shape image
 - Total 1000 augmented images are generated

Data Augmentation

- Elastic deformation:
 - A grid of control points with 64 pixel spacing in the x and y directions is created for each input image
 - Control points are then randomly displaced in both the x and y directions to within ±15 pixels
 - **B-spline** is fit to the grid of displaced control points
 - Bicubic interpolation to warp each pixel to its new coordinates

1

- Ground truth images are transformed accordingly
- Gamma Correction

$$-v = 255(\frac{u}{255})^{\frac{1}{\gamma}}, \quad \gamma = \frac{\log(\frac{1}{2})}{\log(\frac{g}{255})}$$

$$-g \in \{80, 90, \dots, 160\}$$

Slide 53

Example

Slide 54

O'Brien Workshop / VIPER

CNN Architecture

Architecture of our convolutional neural network

O'Brien Workshop / VIPER

April 11, 2017

3D Groundtruth

• Hand-segmented nuclei in a volume of 32x32x32 by labeling each images

Volume1	$241 \le x \le 272$	$241 \leq y \leq 272$	$31 \le z \le 62$
Volume2	$241 \le x \le 272$	$241 \leq y \leq 272$	$131 \le z \le 162$
Volume3	$241 \le x \le 272$	$241 \leq y \leq 272$	$231 \le z \le 262$

Slide 56

Results

Slide 57

O'Brien Workshop / VIPER

Results

Accuracy

		3D Active Contour	Squassh	Our Method
Volume I	Accuracy	84.62%	90.14%	94.25%
	Туре-І	14.80%	9.07%	5.18%
	Type-II	0.25%	0.79%	0.57%
Volume II	Accuracy	79.67%	88.26%	95.24%
	Туре-І	20.16%	11.67%	4.18%
	Type-II	0.16%	0.07%	0.58%
Volume II	Accuracy	76.72%	87.29%	93.21%
	Type-I	23.24%	12.61%	6.61%
	Type-II	0.05%	0.10%	0.18%

- Type-I error (False Alarm): False detection
- Type-II error (Missed): Missing detection

O'Brien Workshop / VIPER

April 11, 2017

3D Convolutional Neural Networks (CNN)

O'Brien Workshop / VIPER

April 11, 2017

Block Diagram

I^{syn}: 3D synthetic image volume
I^{label}: 3D labeled image volume of I^{syn}
I^{orig}: 3D real image volume
I^{seg}: 3D segmented image volume
M: trained 3D CNN model

Slide 61

O'Brien Workshop / VIPER

Synthetic Volume Generation

N: the number of nuclei candidates $I^{can,j}$: the j-th nucleus candidate I^{nuc} : a volume with multiple nuclei σ_b : standard deviation of blur operation σ_n : standard deviation of Gaussian noise λ : mean of Poisson noise

Slide 62

O'Brien Workshop / VIPER

Synthetic Volumes Examples

3D CNN Architecture

- The size of the input volume is $64 \times 64 \times 64$
- **3D** Convolutional Layer
 - The kernel size is $5 \times 5 \times 3$
 - 3D Batch Normalization
 - Activation Function: ReLU
- 3D Max-Pooling Layer/3D Max-Unpooling Layer
 - The downsampling/upsampling rate in each dimension is 2
 - The stride in each dimension is 2
- The size of the output volume is 64 × 64 × 64
- 100 training volumes are used
- 17000 iterations

O'Brien Workshop / VIPER

April 11, 2017

3D Convolutional Layer
 3D Max-Pooling Layer

3D Max-Unpooling Layer

Result

		3Dac	3DacIC	3D Squassh	2D⁺ CNN	3D CNN
Volume1	Acc.	84.09%	87.36	90.14%	94.25%	92.20%
	Type-1	15.68%	12.44	90.7%	5.18%	5.38%
	Type-2	0.23%	0.20	0.79%	0.57%	2.42%
Volume2	Acc.	79.25%	86.78	88.26%	95.24%	92.32%
	Type-1	20.71%	13.12	11.67%	4.18%	6.81%
	Type-2	0.04%	0.10	0.07%	0.58%	0.87%
Volume3	Acc.	76.44%	83.47	87.29%	93.21%	94.26%
	Type-1	23.55%	16.53	12.61%	6.61%	5.19%
	Type-2	0.01%	0.00	0.10%	0.18%	0.55%

Accuracy =
$$\frac{n_{\text{TP}} + n_{\text{TN}}}{n_{\text{total}}}$$
 Type - I Error = $\frac{n_{\text{FP}}}{n_{\text{total}}}$ Type - II Error = $\frac{n_{\text{FN}}}{n_{\text{total}}}$

False-Positive: The output image classifies as nuclei where the groundtruth image classifies as background

False-Negative: The output image classifies as background where the groundtruth image classifies as nuclei

O'Brien Workshop / VIPER

April 11, 2017

Volume 1 Result

Volume 2 Result

Volume 3 Result

Tubule Boundary Segmentation

O'Brien Workshop / VIPER

April 11, 2017

Jelly Filling

O'Brien Workshop / VIPER

April 11, 2017

Jelly Filling Segmentation: Flowchart

Jelly Filling Iterations: Illustration

Convergence Analysis

% Pixel Change Vs Jelly Filling Iterations

Segmentation Accuracy For Jelly Filling Iterations

Slide 73

Segmentation Results

Segmentation Results

The kidney data was provided by Malgorzata Kamocka of Indiana University and was collected at the Indiana Center for Biological Microscopy and by Tarek Ashkar of the Indiana University Division of Nephrology. The liver data was provided by Sherry Clendenon and James Sluka of the Biocomplexity Institute, Indiana University at Bloomington.

O'Brien Workshop / VIPER

April 11, 2017

Slide 74

^ *Squassh:* G. Paul et. al, "Coupling image restoration and segmentation: A generalized linear model/Bregman perspective," International Journal of Computer Vision, vol. 104, no. 1, pp. 69–93, March 2013.

* *Jfilament*: H. Li et.al, "Automated actin filament segmentation, tracking and tip elongation measurements based on open active contour models," *Proceedings of the IEEE International Symposium on Biomedical Imaging*, pp. 1302–1305, June 2009, Boston, MA.

** Active Contour (AC): B. Li, and S. Acton, "Active Contour External Force Using Vector Field Convolution for Image Segmentation," *IEEE Transactions on Image Processing*, vol. 16, no. 8, pp.2096-2106, August 2007 # SteerableJ: M. Jacob and M. Unser, "Design of steerable filters for feature detection using Canny-like criteria," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 26, no. 8, August 2004.

O'Brien Workshop / VIPER

April 11, 2017

Slide 75

Comparison With Other Work

Method	Class	Accuracy	Type-I Error	Туре-П Error	Comp. Time
Active Contour	SA	86.3%	2%	11.7%	50 min
JFilament	SA	90.4%	6.1%	3.5%	40 min
SteerableJ	A	72.4%	22.3%	5.3%	10 sec
3D Level Set	A	80.2%	8%	11.7%	10 sec
Squassh	A	83.5%	5.6%	11%	20 sec
Jelly Filling (proposed)	Α	91.2%	6%	2.7%	80 sec

Example Kidney Image

Segmentation Results: 3D Visualization

Kidney (Voxx v.2)

J. Clendenon et al., "Voxx: a PC-based, near real-time volume rendering system for biological microscopy," *American Journal of Physiology-Cell Physiology*, vol. 282, no. 1, pp. C213–C218, January 2002.

O'Brien Workshop / VIPER

April 11, 2017

Slide 77

Future Work

- Continue to investigate the use of machine learning methods particularly the use deep learning to segment biological structures in 3D
- Quantitative analysis (nuclei counting) by splitting segmented nuclei

Recent Publications (not complete)

- C. Fu, D. J. Ho, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, "Nuclei Segmentation of Fluorescence Microscopy Images Using Convolutional Neural Networks," To appear, *Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)*, April 2017, Melbourne, Australia.
- S. Lee, P. Salama, K. W. Dunn, and E. J. Delp, "Segmentation of Fluorescence Microscopy Images Using Three Dimensional Active Contours with Inhomogeneity Correction," To appear, *Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)*, April 2017, Melbourne, Australia.
- D. J. Ho, P. Salama, K. W. Dunn, and E. J. Delp, "Boundary Segmentation for Fluorescence Microscopy Using Steerable Filters," *Proceedings of the SPIE Conference on Medical Imaging*, February 2017, Orlando, FL. DOI: 10.1117/12.2254627
- C. Fu, N. Gadgil, K. Tahboub, P. Salama, K. Dunn and E. J. Delp, "Four Dimensional Image Registration for Intravital Microscopy," *Proceedings of the Computer Vision for Microscopy Image Analysis (CVMI) workshop at Computer Vision and Pattern Recognition (CVPR)*, July 2016, Las Vegas, NV. DOI: 10.1109/CVPRW.2016.175
- N. Gadgil, P. Salama, K. W. Dunn, and E. J. Delp, "Jelly Filling Segmentation of Fluorescence Microscopy Images Containing Incomplete Labeling," *Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)*, April 2016, Prague, Czech Republic. DOI: 10.1109/ISBI.2016.7493324
- N. Gadgil, P. Salama, K. W. Dunn, and E. J. Delp, "Nuclei Segmentation of Fluorescence Microscopy Images Based on Midpoint Analysis and Marked Point Process," *Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)*, March 2016, Santa Fe, NM. DOI: 10.1109/SSIAI.2016.7459169

