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Our Project Goals

• Develop tools for microscopy image analysis and 
visualization – e.g. registration, segmentation, nuclei 
detection 

• Develop methods based on the latest approaches in image 
analysis and computer vision

• Develop tools that are “biologist aware”  semi-
automatic approaches may be better than fully 
automatic methods
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Motivation
• Fluorescence microscopy is a form of optical microscopy 

used to image/visualize subcellular structures in living 
cells or animals

• “Fluorescence” is the emission of light by the process of 
absorbing and releasing energy from fluorescent 
molecules

Jablonski diagram

laser

detector

coverslip
sample

objective

dichroic
mirror

lens

pinhole

fluorescent 
molecule

Confocal microscopy

Ground State

Excited State

Excitation
(Absorption)

Fluorescence

Vibrational
Relaxation

photon (E)



O’Brien Workshop / VIPER                     April 11, 2017 Slide 6

Motivation
• The energy of a photon is inversely proportional to the 

wavelength
• Confocal microscopy uses light with shorter wavelengths
• Two-photon microscopy simultaneously excites 

fluorescent molecules with longer wavelengths
• Two-photon microscopy enables  image/visualize in 

deeper tissue
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Image Data Volumes

• Two types of multiphoton microscopy image sets:
– Three dimensional / volumetric / Z-series 

(progressively increasing tissue depths)
– Time-series (progressively increasing time instances 

for single or multiple focal planes)

• Single-channel or multi-channel data sets
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Challenges

• Image contrast decreases with depth in biological tissues 
due to increased light scattering and absorption

• Image resolution (spatial and temporal) and signal levels 
are decreased due to the need for high image capture 
rates necessary to image dynamic biological structures

• Segmentation results are very sensitive to small changes 
in parameters, causing the failure of typical image 
analysis/computer vision methods

• Objects have poorly defined edges (sparse, not rigid and 
continuous)
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Challenges

• So type automatic image analysis is necessary (size and 
complexity of image volumes make manual image 
analysis impractical) – lack of ground truth data

• Image sets are frequently obtained from live specimens –
motion artifacts are introduced from respiration and 
heartbeat

• Data sets is corrupted with noise from a variety of 
sources and distributions
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Challenges – Channel Crosstalk

Blue Green Red
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Notation
Izp,tq,cr

represents our images whose size is X×Y where zp, tq, cr represents 
P focal slices, Q time samples, and R spectral channels where
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4D Image Registration
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Research Goal
• 4D immune cells taken from live rat kidney using two-photon 

microscopy
– X = 512, Y = 512, P = 11, Q = 61, R = 4

• Motion artifacts are generated during the data acquisition process 
due to animal’s heart beating and respiration

• The goal is to minimize motion artifact both in the z direction and in 
time

Fz6t1c1
Fz6t1c2

Fz6t1c3
Fz6t1c4



O’Brien Workshop / VIPER                     April 11, 2017 Slide 15
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1D Interpolation
• 1D cubic convolution interpolation in Z direction to 

smooth the images
• After this process, the number of images in the z 

direction is increased from 11 to 41

Original z section image

Interpolated z section image
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3D B-Splines Non-Rigid Registration

• Images in the z direction are acquired serially
• Motion artifacts between images slices in z direction need 

to be removed
• Our 3D non-rigid registration technique is used on each 

3D volume to remove the motion artifacts
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3D Non-Rigid Registration

Original image XY Registered image XY

Original image YZ Registered image YZ



O’Brien Workshop / VIPER                     April 11, 2017 Slide 19

3D Non-rigid 
registration
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3D Gaussian Blur and Adaptive 
Histogram Equalization

• 3D Gaussian blur and adaptive histogram equalization (AHE) are 
used to create better defined biological structures in our images

– A rectangular window with size of 17 ×17×9 is used in 3D 
Gaussian blur

– Adaptive histogram equalization employs a rectangular window 
with size of 17 ×17×9 

Original Gaussian blur AHE
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4D Rigid Registration

7 sample time points in XY and YZ views
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Results
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Validation

MIP of XY

MIP of YZ

Original Registered* Maximum Intensity Projection (MIP)
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3D Spherical Histograms 
of Motion Vectors

(a) histogram of original volume in the view 
from top,

(b) histogram of registered volume in the 
view from top,

(c) histogram of original volume in the view 
from bottom, 

(d) histogram of registered volume in the 
view from bottom, 

(e) histogram of original volume in +XY 
view, 

(f) histogram of registered volume in +XY 
view,

(g) histogram of original volume in -XY 
view, 

(h) histogram of registered volume in -XY 
view, 

(i) histogram of original volume in XZ 
view,

(j) histogram of registered volume in XZ 
view.
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Nuclei Segmentation
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Marked Point Process (MPP) + 
Midpoint Analysis
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Nuclei Segmentation: 
Our Proposed Method

Block Diagram

Original Blue 
Channel Image

Segmentation
Result
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Goal: To separate foreground that represents biological entity 

Let                  be the pixel intensity at pixel t of the image
Thresholding function  (Use local 3D information)  

: Mean pixel intensity of the window at t
: A positive constant used as a fixed additive threshold
Voting function (Aggregate votes)

for window                        at t
Foreground Mask                               

Adaptive Thresholding
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Midpoint Analysis
Goal: To classify each connected component as

(i) single-object component      (ii) multiple-object component
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Nuclei Segmentation Using 
Distance Function Optimization

s

Single-object 
component 

• Goal: To estimate parameters of a single-object component
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Nuclei Segmentation Using 
Marked Point Process (MPP)

• Goal: To estimate parameters of a multiple-object component

*X. Descombes, R. Minlos, and E. Zhizhina. "Object extraction using a stochastic birth-and-death dynamics 
in continuum," Journal of Mathematical Imaging and Vision, Vol. 33, No. 3, pp.  347-359, March 2009.

Multi-object component 

We use a 2D spatial point process 
approach based on a stochastic birth-and-
death dynamics *
We modify the energy function to include

(1) Non-uniform brightness in an image
(2) Improved object interaction
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Marked Point Process (MPP)
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*X. Descombes, R. Minlos, and E. Zhizhina. "Object extraction using a stochastic birth-and-death dynamics 
in continuum," Journal of Mathematical Imaging and Vision, Vol. 33, No. 3, pp.  347-359, March 2009.

• Object Energy *                  

- How well does an object configuration fits the image data?
• Brightness Energy

- Accounts for local mean brightness in the neighborhood of s
Therefore, birth energy * and birth rate *                

Cumulative *                            Normalized *

• Overlap Energy *                                                  

• Peak Energy                                                  

Selectively 
Penalize 
Object 
Overlap
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Marked Point Process (MPP)
(I) Determine                   ,                   ,               ,           ,        ,         and

for all            and          
(II) Parameter Initialization: Set the inverse temperature              and the 

discretization step  
(III) Configuration Initialization: Start with            such that     contains 

objects centered at     where         achieves local maxima and     contains 
their parameters                           for each     respectively 

(IV) Birth Step: For each            , if           add a point at     with probability           
and give birth to an object of     with probability

(V) Death Step: Sort the configuration of points      in descending order of    
. For each sorted point    obtain death rate                         , where

and kill the object with probability 
(VI) Convergence Test: If all the objects born in the Birth Step are killed in    

the Death Step, stop. Otherwise, increase     and decrease    by geometric 
scheme using common ratios       and      and go back to the Birth Step 
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X. Descombes, R. Minlos, E. Zhizhina,"Object extraction using a stochastic birth-and-death dynamics in 
continuum," Journal of Mathematical Imaging and Vision, Vol. 33, No. 3, pp.  347-359, March 2009.
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Segmentation Results

N = 628

Original Three 
Channel Image 

Blue Channel Classified 
Components

Segmentation Results 
(Overlaid)

Segmentation Results
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Experimental Results: Comparison

[Ref] X. Descombes, R. Minlos, E. Zhizhina,"Object extraction using a stochastic birth-
and-death dynamics in continuum," Journal of Mathematical Imaging and Vision, Vol. 
33, No. 3, pp.  347-359, March 2009.

MPP Method from [Ref] Our Proposed Method

N = 241 N = 628
Average Processing Time: 

20 times faster
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3D Active Contours with 
Inhomogeneity Correction (3DacIC)
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• We propose a method (3DacIC) that segments 3D 
microscopy volumes based upon a combination of

– 3D region-based active contours 
– 3D inhomogeneity correction

Introduction
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Energy Function of 3Dac

• 3Dac: Extension version of 2Dac such that 

– IO
zp

(x): the pth image in a volume to be analyzed where 
p ∈ {1, 2, …, P}

– ϕzp
(x): zero-level curve (Lipschitz function) 

– c1, c2 : Mean intensities inside of ϕzp
and outside of ϕzp

• Note that c1 and c2 are vectors with three elements 
(3 × 1 vectors)

– λ1, λ2, μ: Weight coefficients for each term
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Proposed Energy Function (3DacIC)

• Utilizing Heaviside’s function, H(∙), the Dirac delta 
function, δ(∙) and swapping order of the integrals yields

– where * is 3D convolution operation and 1K(x) is a 3D 
volume of same size as IO

zp
(x) whose entries are all 1 except 

near the volume boundary Ω
– Note that 1K(x) is obtained by convolving a 3D matrix of 

ones with 3D kernel K.
– For brevity we have omitted the subscript zp and the 

explicit argument x
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Segmentation Results and Inhomogeneity Corrected Images at Various Depth for WSM Images

3DacIC (Proposed) 3DacIC (Proposed)3DacIC (Proposed)

Original 100th image Original 300th imageOriginal 200th image

Inhomogeneity corrected Inhomogeneity correctedInhomogeneity corrected
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Results Comparison – Flipped Nuclei Stack A 7th Images (Red: Nuclei Contours, Green: Nuclei Regions)

Original Ground truth

2Dac [1] 2DacIC [3]

3Dac [4, 5] 3DacIC (Proposed)

2Dlac [2]

3Dsquassh [6]
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Results Comparison – Flipped Nuclei Stack B 16th Images (Red: Nuclei Contours, Green: Nuclei Regions)

2Dac [1]

3Dsquassh [6]

2Dlac [2] 2DacIC [3]

3Dac [4, 5] 3DacIC (Proposed)

Original Ground truth
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• TP: Nuclei pixels correctly detected as nuclei pixels in 
segmented image

• TN: Background correctly detected as background in 
segmented image

• FP: Background wrongly detected as nuclei pixels in 
segmented image

• FN: Nuclei pixels wrongly detected as background in 
segmented image

• Tot: Total number of image pixels

Accuracy - Type I and Type II Errors

Tot
FNTypeII

Tot
FPTypeI

Tot
TNTPAccuracy 


      ,     ,
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Flipped Nuclei Stack A Blue 7th Image

Accuracy Type I Type II
2Dac 54.7066% 43.3144% 1.9791%
2Dlac 57.6168% 39.1350% 3.2482%

2DacIC 73.1171% 25.0900% 1.7929%
3Dac 79.7585% 16.6313% 3.6102%

3Dsquassh 88.7196% 8.5674% 2.7130%
3DacIC (Proposed) 91.8678% 5.6053% 2.5269%

• Type-I error (False Alarm): False detection
• Type-II error (Missed): Missing detection
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Flipped Nuclei Stack B Blue 16th Image

Accuracy Type I Type II
2Dac 61.8896% 32.4192% 5.6911%
2Dlac 58.2088% 31.5224% 10.2688%

2DacIC 80.3520% 15.1890% 4.4590%
3Dac 78.4348% 15.1447% 6.4205%

3Dsquassh 85.3157% 5.9555% 8.7288%
3DacIC (Proposed) 89.6511% 4.4998% 5.8491%

• Type-I error (False Alarm): False detection
• Type-II error (Missed): Missing detection
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Flipped Nuclei Stack A1 Blue 18th Image

Accuracy Type I Type II
2Dac 57.3856% 38.9107% 3.7037%
2Dlac 66.3521% 28.1330% 5.5149%

2DacIC 86.1752% 11.3010% 2.5238%
3Dac 72.8584% 24.9794% 2.1622%

3Dsquassh 83.3508% 14.2776% 2.3716%
3DacIC (Proposed) 87.7125% 9.4864% 2.8011%

• Type-I error (False Alarm): False detection
• Type-II error (Missed): Missing detection
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Flipped Nuclei Stack B1 Blue 18th Image

Accuracy Type I Type II
2Dac 72.2759% 20.4388% 7.2853%
2Dlac 63.4697% 27.4529% 9.0775%

2DacIC 87.6350% 8.9874% 3.3775%
3Dac 81.5754% 12.5660% 5.8586%

3Dsquassh 83.2233% 13.0070% 3.7697%
3DacIC (Proposed) 89.0999% 7.0015% 3.8986%

• Type-I error (False Alarm): False detection
• Type-II error (Missed): Missing detection
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Flipped Nuclei Stack AWSM Flipped Nuclei Stack B

• 3D visualization using Voxx
• Each dataset (WSM, Flipped Nuclei Stack A, and 

Flipped Nuclei Stack B) was cropped into subvolumes
60×60×20, respectively

3D Segmentation Results of Each Dataset 
(Green: Nuclei Regions)
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2D+ Convolutional Neural Networks 
(CNN)
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Research Goal
• 25x-water-scale-mount (wsm) from rat kidney using two-

photon microscopy
– X = 512, Y = 512, P = 512, Q = 1, R = 1

• Fluorescent molecules label nuclei
• The goal is to segment the nuclei

wsm Iz70
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Proposed Method

Data Augmentation
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Data Augmentation

• Water-scale-mount blue channel (512 images)
– We have 11 groundtruth images
– 10 images are used for data augmentation

• Elastic Deformation (faked shape)
• Gamma Correction (faked contrast)
• For each ground truth image:

– First generated 100 images with faked shape
– Second generated 10 more images with faked contrast 

on each faked shape image
– Total 1000 augmented images are generated
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Data Augmentation

• Elastic deformation:
– A grid of control points with 64 pixel spacing in the x and y directions is 

created for each input image
– Control points are then randomly displaced in both the x and y 

directions to within ±15 pixels
– B-spline is fit to the grid of displaced control points
– Bicubic interpolation to warp each pixel to its new coordinates
– Ground truth images are transformed accordingly

• Gamma Correction
– ,

– ݃ ∈ ሼ80,90, … , 160ሽ

ݒ ൌ 255ሺ
ݑ
255ሻ

ଵ
ఊ ߛ ൌ

logሺ12ሻ

logሺ ݃255ሻ
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Example

Water-scale-mount blue 70th

original image
Elastic Deformation Gamma Correction

Data-I
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CNN Architecture

Architecture of our convolutional neural network
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3D Groundtruth

• Hand-segmented nuclei in a volume of 32x32x32 by 
labeling each images

z

Water-scale-mount blue

Volume1 241 ≤ x ≤ 272 241 ≤ y ≤ 272 31 ≤ z ≤ 62

Volume2 241 ≤ x ≤ 272 241 ≤ y ≤ 272 131 ≤ z ≤ 162

Volume3 241 ≤ x ≤ 272 241 ≤ y ≤ 272 231 ≤ z ≤ 262
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Results

(a) Original volume
(b) 3D ground truth volume, 
(c) 3D active contour
(d) 3D Squassh
(e) Segmentation result before refinement
(f) Segmentation result from after refinement
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Results

Data-II Data-III Data-IV
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Accuracy
3D Active 

Contour
Squassh Our Method

Volume I Accuracy 84.62% 90.14% 94.25%

Type-I 14.80% 9.07% 5.18%

Type-II 0.25% 0.79% 0.57%

Volume II Accuracy 79.67% 88.26% 95.24%

Type-I 20.16% 11.67% 4.18%

Type-II 0.16% 0.07% 0.58%

Volume II Accuracy 76.72% 87.29% 93.21%

Type-I 23.24% 12.61% 6.61%

Type-II 0.05% 0.10% 0.18%

• Type-I error (False Alarm): False detection
• Type-II error (Missed): Missing detection
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3D Convolutional Neural Networks 
(CNN)
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Block Diagram

Train Inference
Synthetic 
Volume 

Generation

3D CNN

Isyn, Ilabel M

Iorig

Iseg

Isyn: 3D synthetic image volume
Ilabel: 3D labeled image volume of Isyn

Iorig: 3D real image volume 
Iseg: 3D segmented image volume 
M: trained 3D CNN model
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Synthetic Volume Generation

N: the number of nuclei candidates
Ican,j: the j-th nucleus candidate
Inuc: a volume with multiple nuclei
σb: standard deviation of blur operation
σn: standard deviation of Gaussian noise
λ: mean of Poisson noise

Nucleus 
Candidate 
Generation

Overlapping 
Nuclei 

Removal

Blur/Noise 
Operation

N

Ilabel Isyn

σb, σn, λ

Ican,1

Ican,N

…

Inuc
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Isyn,1

Synthetic Volumes Examples

Ilabel,1

Isyn,2

Ilabel,2

Isyn,3

Ilabel,3
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3D CNN Architecture

3D Convolutional Layer
3D Max-Pooling Layer
3D Max-Unpooling Layer

• The size of the input volume is 64×64×64
• 3D Convolutional Layer

• The kernel size is 5×5×3
• 3D Batch Normalization
• Activation Function: ReLU

• 3D Max-Pooling Layer/3D Max-Unpooling Layer
• The downsampling/upsampling rate in each dimension is 2
• The stride in each dimension is 2

• The size of the output volume is 64×64×64
• 100 training volumes are used
• 17000 iterations

1 8 88 8 8 8 8 8 8 18 8 8 1
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Result

total

TNTPAccuracy
n

nn 


total

FPError  I-Type
n
n


total

FNError II-Type
n
n



False-Positive: The output image classifies as nuclei 
where the groundtruth image classifies as background

False-Negative: The output image classifies as background 
where the groundtruth image classifies as nuclei

3Dac 3DacIC 3D Squassh 2D+ CNN 3D CNN

Volume1
Acc. 84.09% 87.36 90.14% 94.25% 92.20%

Type-1 15.68% 12.44 90.7% 5.18% 5.38%
Type-2 0.23% 0.20 0.79% 0.57% 2.42%

Volume2
Acc. 79.25% 86.78 88.26% 95.24% 92.32%

Type-1 20.71% 13.12 11.67% 4.18% 6.81%
Type-2 0.04% 0.10 0.07% 0.58% 0.87%

Volume3
Acc. 76.44% 83.47 87.29% 93.21% 94.26%

Type-1 23.55% 16.53 12.61% 6.61% 5.19%
Type-2 0.01% 0.00 0.10% 0.18% 0.55%
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Volume 1 Result

Original 3D ground truth 3Dac

3D Squassh 2D+ CNN 3D CNN

3DacIC
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Volume 2 Result

Original 3D ground truth 3Dac

3D Squassh 2D+ CNN 3D CNN

3DacIC
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Volume 3 Result

Original 3D ground truth 3Dac

3D Squassh 2D+ CNN 3D CNN

3DacIC
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Tubule Boundary Segmentation
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Jelly Filling
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Jelly Filling Segmentation: Flowchart
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Jelly Filling Iterations: Illustration

Original 0 1 2

7 6 5 4

3

8

9 10 11 12 (Final)

 Stopping 
criterion 
satisfied
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Convergence Analysis

Segmentation Accuracy 
For Jelly Filling Iterations

% Pixel Change Vs 
Jelly Filling Iterations
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Segmentation Results

Original Images 

Segmentation Results 

Kidney Liver

The kidney data was provided by Malgorzata Kamocka of Indiana University and was collected at 
the Indiana Center for Biological Microscopy and by Tarek Ashkar of the Indiana University Division 
of Nephrology. The liver data was provided by Sherry Clendenon and James Sluka of the 
Biocomplexity Institute, Indiana University at Bloomington.
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Comparison With Other Work

# SteerableJ: M. Jacob and M. Unser, “Design of steerable filters for feature detection using Canny-like 
criteria,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 8, August 2004.

* Jfilament: H. Li et.al, “Automated actin filament segmentation, tracking and tip elongation measurements 
based on open active contour models,” Proceedings of the IEEE International Symposium on Biomedical Imaging, 
pp. 1302–1305, June 2009, Boston, MA.

^ Squassh: G. Paul et. al, “Coupling image restoration and segmentation: A generalized linear model/Bregman
perspective,” International Journal of Computer Vision, vol. 104, no. 1, pp. 69–93, March 2013.

** Active Contour (AC): B. Li, and S. Acton, “Active Contour External Force Using Vector Field Convolution for 
Image Segmentation,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp.2096-2106, August 2007
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Comparison With Other Work

Example Kidney Image
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Segmentation Results: 3D Visualization

Kidney (Voxx v.2)
J. Clendenon et al., “Voxx: a PC-based, near real-time volume rendering system for 
biological microscopy,” American Journal of Physiology-Cell Physiology, vol. 282, no. 1, 
pp. C213–C218, January 2002.
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Future Work

• Continue to investigate the use of machine 
learning methods particularly the use deep 
learning to segment biological structures in 3D

• Quantitative analysis (nuclei counting) by 
splitting segmented nuclei
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(not complete)
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International Symposium on Biomedical Imaging (ISBI), April 2017, Melbourne, Australia.

• S. Lee, P. Salama, K. W. Dunn, and E. J. Delp, “Segmentation of Fluorescence Microscopy Images 
Using Three Dimensional Active Contours with Inhomogeneity Correction,” To appear, Proceedings of 
the IEEE International Symposium on Biomedical Imaging (ISBI), April 2017, Melbourne, Australia.

• D. J. Ho, P. Salama, K. W. Dunn, and E. J. Delp, “Boundary Segmentation for Fluorescence 
Microscopy Using Steerable Filters,” Proceedings of the SPIE Conference on Medical Imaging, 
February 2017, Orlando, FL. DOI: 10.1117/12.2254627
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Analysis (CVMI) workshop at Computer Vision and Pattern Recognition (CVPR), July 2016, Las Vegas, 
NV. DOI: 10.1109/CVPRW.2016.175

• N. Gadgil, P. Salama, K. W. Dunn, and E. J. Delp, “Jelly Filling Segmentation of Fluorescence 
Microscopy Images Containing Incomplete Labeling,” Proceedings of the IEEE International 
Symposium on Biomedical Imaging (ISBI), April 2016, Prague, Czech Republic. DOI: 
10.1109/ISBI.2016.7493324

• N. Gadgil, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei Segmentation of Fluorescence Microscopy 
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Symposium on Image Analysis and Interpretation (SSIAI), March 2016, Santa Fe, NM. DOI: 
10.1109/SSIAI.2016.7459169


