

Overview:

The fluorescent proteins (FPs) for live cell imaging:

- Origins and Limitations:
- General characteristics of the FPs
- Aequorea color variants
- New FPs from corals (and fish)
- The (current) best FPs
- Optical highlighters

Overview:

The fluorescent proteins (FPs) for live cell imaging:

- Origins and Limitations:
- General characteristics of the FPs

General characteristics of Aequorea GFP

<text>

General characteristics of GFP

• The wild type GFP displays a complex absorption spectrum:

General characteristics of Aequorea GFP

- Wild type GFP folds poorly at physiological temperature.
- "Humanized" codon usage, Kozak initiation codon.
- Mutations that improve efficiency of chromophore formation:
 - F64L dramatically improved maturation at 37°:
 - V68L enhances chromophore oxidation;
- N149K improves folding rate;
- M153T, V163A enhances folding.
- The enhanced FPs (e.g., EGFP)

Mutant variants of Aeguorea GFP

• Mutation of the chromophore position Ser 65 > Thr stabilized the chromophore, yielding a single absorption peak at 489 nm.

Other chromophore mutations shifted the emission spectrum.
 Tsien (1998) Ann Rev Blochem 67:509
 ORNDay_O'Brien

2

Aequorea FPs and dimer formation

 Most of the natural FPs that have been characterized are either dimers, tetramers, or higher-order complexes.

• GFP could be crystallized as a monomer, but the proteins can form dimers when highly concentrated.

Aequorea FPs and dimer formation

- Dimerization is not typically observed when the proteins are free to diffuse within the cell;
- but, the expression of FPs at high concentrations in a diffusion limited volume can lead to the formation of dimers.

 The substitution of alanine at position 206 with lysine (A206K) prevents dimer formation.

Zacharias et al (2002) Science 296:913; Kenworthy (2002) TBCS 27:435

This is *especially* important for **FRET-based** imaging methods.

© RNDay_O'Brien

Overview:

- The fluorescent proteins (FPs) for live cell imaging:
- Origins and Limitations:
- General characteristics of the FPs
- Aequorea color variants
- New FPs from corals (and fish)

© RNDay_O'Brien'15

New variants based on DsRed

- Mutagenesis to improve maturation: DsRed.T1
- Site-directed mutagenesis to break the tetramer;
- Random mutagenesis to recover red fluorescence.

mRFP1 was an improvement -

- mRFP1 overcame tetramer and slow maturation;
- and shifted excitation and emission by 25 nm.

but, mRFP was not optimal for some applications

 mRFP1 has decreased quantum yield and photostability, and a non-fluorescent form absorbs at 503 nm - 60% is in this dark state.
 Hillesheim et al. (2006) Biophys J 91:4273

Subcellular distribution	of FP-tagged proteins	31
 Distribution: Does the fusion protein replicate the localization of the endogenous 	EPP2.Mo B C C	h-Keratin
 Function: 	E F G G H	D2-Golgi
Does the fusion protein have all of the functions of the endogenous protein?	Tation-Zysia I J J Karker P-JTub K L L	-Actinin
(rapid, efficient maturation, monomer help)	EGFP.H28 Inter Pro Prometa Meta M N O P Q Q	Ana

w	Protein	Color	Peak Ex	Peak Em	Brightness	Photo- Stability	Reference	Source
	EBFP2	Blue	383	448	18	++	Al et al. 2007	Dr. Robert Campbell
*	Cerulean3	Cyan	433-445	475-503	24	+++ *	Markwardt et al. 2011	Dr. Mark Rizzol
* •	Turquoise2	Cyan	433-445	475-503	28	+++**	Goedhart et al. 2012	Dr. Theo Gadella
	mTFP	Teal	462	492	54	+++*	Ar et al. 2006	Allele Biotech
	EmGFP	Green	487	509	39	****	Cabitt-01.00, 1999	Invitropen
*	Clover	Green	505	.515	84	++	Lam at al. 2012	Addgene
* 1	NeonGm	Green	506	517	92	++++	Sharner at al. 2013	Dr. Nathan Shanne
	Venus Citrine	Yellow/Grn	515 516	528 529	53 58	+++	Nagai et al. 2002 Griesbeck et al. 2001	Dr. Atsushi Miyawaki Dr. Roger Tsien
1	Amber [†]	None			0		Koushik et al. 2006	Addgane
	mKO2 (Kusabina)	Orange	551	565	39	+++	Karasawa et al. 2004; Saltatie-Sawano 2008	MBL International
×	TagRFP-T	Orange	555	584	33	++++	Merzlyak et al. 2007; Shaner et al. 2008	Evrogen
	tdTomato	Orange	554	581	95	+++	Shaner et al. 2004	Dr. Roger Tsien
*	mRuby2	Red	559	600	43	111	Lam et al. 2012	Addgene
	mCherry	Red	587	610	17		Shaner et al. 2004	Clamachy.
	mKate2	Deep Red	588	633	25	****	Shicharbo et al. 2009	Evingen

Overview:

The fluorescent proteins (FPs) for live cell imaging:

- Origins and Limitations:
- General characteristics of the FPs
- Aequorea color variants
- New FPs from corals (and fish)
- The (current) best FPs
- Optical highlighters

Photoswitching behavior of *Aequorea* GFP

- wtGFP has peak absorbance at 395 nn with a minor peak at 475 nm.
- Illumination with intense UV light resulted in decrease absorbance at 395 nm, and enhanced absorbance at 475 nm.
- This results from photoisomerization of the chromophore.

PA-GFP: photoswitching variant of wtGFP

 PA-GFP is wtGFP with the T203H mutation. Optimal Ex is at 395 nm, with peak emission at 517 nm – there is little emission with Ex 488 nm:

PA-GFP: photoswitching variant of wtGFP

- PA-GFP is wtGFP with the T203H mutation. Optimal Ex is at 395 nm, with peak emission at 517 nm – there is little emission with Ex 488 nm:
- Intense 405 nm illumination switches excitation peak to 504 nm:

PA-GFP: an optical marker

- Intense 405 nm illumination is thought to cause decarboxylation of the glutamic acid at position 222 near the chromophore;
- this converts the chromophore from a neutral to an anionic state:

Advantages and limitations of photoactivation

- The redistribution of fluorescence over a dark background usually has better signal-to-noise compared to photobleaching.
- The photoactivation event is more rapid than photobleaching.
- The problem of probes in a reversible dark state is eliminated.

Limitations:

- Photoactivation requires irradiation at ~ 400 nm, which can be harmful.
- Can't localize the probe prior to activation. Goldman et al. (2010) Live Cell Imaging 2nd editio

Dronpa: photoswitching variant from coral

- Dronpa, a photo-switchable FP, was cloned from a coral.
- Native Dronpa was isolated as a oligomeric complex;
- and then engineered to a monomeric form.

Pectinia sp.

- Dronpa is excited at 490 nm, very bright green emission (IB=80).
- Continued excitation drives Dronpa into a dark state.
- It can be reactivated by illumination at 405 nm.
 (Dronpa: Disappearance of a ninja)

Photoswitching behavior of Dronpa

- The protein is capable of repeated switching between the fluorescent and dark states;
- light-activated cis-trans photoisomerization of the chromophore generating the different dark and fluorescent states.

Photoswitching behavior of Dronpa

- Dronpa was expressed in the developing zebra fish embryo.
- Fluorescence was detected and switched off at 488 nm, and then reactivated with a 405 nm pulse.
- Sequential regions are marked and erased over time.

ramaki and Hatta (2006) Dev. Dynamics 235:2192

Photo-convertible FPs: optical highlighters

- Some recently discovered FPs can change their color.
- Light-induced photo-conversion of FPs may serve as a protection mechanism to absorb high-energy sunlight - sunscreen.
- Kaede was the first photo-convertible FP, isolated from the stony coral Trachyphyllia. (Kaede: Japanese maple leaf)

Photo-convertible FPs: optical highlighters

- Illumination of Kaede-like proteins with blue light (405 nm) results in a rapid shift in the emission from green to red.
- The color change is stable and irreversible;
- and is driven by a light-catalyzed cleavage in the chromophore.

Photo-convertible FPs: optical highlighters

- mEos2 is the best performing monomeric green-tored photo-convertible FP. (Eos is the Greek goddess of dawn) McKinney (2009) Nat Meth 6:131 Day and Davidson (2009) Chem. Soc. Rev. 38:2887
- Directed evolution yielded mEos3.2 with improved brightness, maturation, photostability.

Eos3.2 H2E

Advantages and limitations of FPs

Advantages:

- Visualizing the behavior of FP-tagged proteins in the natural context of living cells, tissues, organisms.
- Marking cell populations in TG animals (Brainbow mice);
- following proteins in specific organelles, multi-color labeling, dynamics (FCS);
- Super-resolution (PALM), tumor progression, protein-protein interactions (FRET).

Day and Davidson (2014) The Fluorescent Protein Revolution (CRC Press)

Limitations:

- Early variants of FPs should be avoided: ECFP, EYFP, DsRed...
- Potential for overexpression artifacts in transient transfections (stables?)
- Verify localization with immunostaining of endogenous proteins (which is correct);
- Verify interactions with co-IP both require specific Abs;
- Verify behavior with mutagenesis for loss of function (endogenous background).
- Knockin to replace endogenous protein!

Gibson et al (2013) Nat Methods 10:715

Present: Jing Qi, Ph.D. Wen Tao, Ph.D. Amanda Siegel, Ph.D. Katie Summers

Corey Ariss Nikki Hays Ignacio Demarco, Ph.D. Ty Voss, Ph.D. John Enwright, Ph.D. Meg Crook, M.D. Cindy Booker

Collaborators:

Mike Davidson, FSU Fred Schaufele, UCSF Ammasi Periasamy, Keck Center for Cellular Imaging, UVA Ken Dunn, IUSM, Indiana Center for Biological Microscopy

NIH DK 43701-18, IUSM, NIH O'Brien Center (P30DK079312)

SERIES IN CELLULAR AND CLINICAL IMAGING Fluorescent Protein Revolution

Edited by Richard N. Day Michael W. Davidson CRC Press

