Intravital microscopy: a novel tool to study membrane traffic in physiological conditions and during invasion and metastasis

Roberto Weigert, Ph.D. Intracellular Membrane Trafficking Unit Oral and Pharyngeal Cancer Branch NIDCR-NIH

Intracellular Membrane Trafficking Unit

Andrius Masedunskas 👡

Tim Wigand

PTRU, NIDCR

Thomas H. Bugge Katiuchia Uzzun Sales <u>OPCB, NIDCR</u> Silvio Gutkind Vyomesh Patel Kantima Leelahavanichkul Alfredo Molinolo

VRC, NIDCR

Barton Weick Rebecca Martinez

<u>NHLBI</u>

Bob Adelstein Marie Anne Conti

<u>NICHD</u>

Tamas Balla <u>University of Pittsburgh</u> Alexander Sorkin <u>University of South California</u>

Sarah Hamm-Alvarez

Natalie Porat-Shliom Monika Sramkova

Panomwat Amornphimoltham

Kamil Rechache

Former members

Laura Parente

Sonita Bennett

Sara Lamb

Myo-Pale' Aye

Intracellular Membrane Traffic

Transport intermediates

Endosomal recycling

Regulated exocytosis

Physiopathology of the oral cavity

Experimental models to study membrane traffic

Physiological relevance

Intravital Microscopy **Deep tissue Homogeneous tissue** Single-photon Two-photon $E^{*} -$ **Higher spatial resolution** Long term imaging Endogenous emission $\lambda_e > \lambda_{1p}$ Tongue Xenograft GFP-H2B/TX-red dextran/SHG Excitation 930 nm E_0 Salivary glands $\lambda_{2p}=2 \lambda_{1p}$ GFP/mTomato mouse 60x, NA 1.2 **Single-photon** $50 \,\mu \mathrm{m}$ **Two-photon** 150 µm 20x, NA 0.95-1 $140 \,\mu \mathrm{m}$ Brain 500 µm TX-red dextran Excitation 930 nm $50 \,\mu\mathrm{m}$ •

1000 µm

1500 µm

Deeper tissue penetration

⊸ •700 µm

Masedunskas et al., (2008) Traffic, Weigert et al., (2010) Hist. Cell Biol, Amornphimoltham et al., (2010) Adv Drug. Del. Rev

Amornphimoltham et al., (2010) Adv. Drug Deliv Rev.

An experimental system to image subcellular organelles in live animals

- 1) Stability
- 2) Spatial resolution
- 3) Temporal Resolution
- 4) Quantitative analysis

Endocytosis of systemically injected fluorescently labeled molecules

500 kDa FITC-Dextran/ 70 kDa TXR-Dextran

Early endosomes / Lysosomes 70 kDa 488-Dext / 70 kDa TXR-Dext

.....And amenable to pharmacological and genetic manipulations

- 1) Delivery of fluorescent molecules
- 2) Selective delivery of drugs
- 3) Gene transduction

GFP-Clathrin / TGN38-mcherry

Masedunskas and Weigert (2008) Traffic - Sramkova et al. (2009), Am. J. Phys - Weigert et al. (2010) Hist. and Cell Bio

Endosomal recycling

Regulated exocytosis

Intercalated ducts

Regulated exocytosis in salivary glands

1)

TGN

How is the remodeling of the apical membrane, the actin cytoskeleton and the surface of the granule regulated by a stimulus originated from the basolateral pole?

Which molecules are activated during secretion...

Stimulus

1) on the surface of the granule?

2)

2) at the apical plasma membrane?

Exocrine glands in the GFP mouse

Submandibular

Lacrimal

Pancreas

10 um

Sublingual

Adrenal

The architecture of the acini

GFP

GFP/Phalloidin

GFP/Secretory granules

2300-3100
9-10
1.5 – 2.0
0.3-0.4

Dynamics of the secretory granules during regulated exocytosis in vivo

Resting

Stimulated – Iso/Carb

Submandibular gland

Signaling through β-adrenergic and not muscarinic receptors stimulate the exocytosis of the secretory granules in the salivary glands *in vivo*

Secretory granules exocytosis in vivo occurs through single fusion events

Sec Granule Plasma membrane

Secretory granules exocytosis in vivo occurs through single fusion events

10 kDa Texas-Red Dextran

Secretory granules exocytosis in vivo occurs through single fusion events

Actin is recruited onto the secretory granules after fusion with the APM

GFP-Lifeact (F-actin)

Riedl et al., (2008) Nat. Methods Courtesy of Tamas Balla (NICHD)

GFP-Lifeact mouse

Actin is recruited onto the secretory granules after fusion with the APM

GFP-Farnesyl

RFP-Lifeact

Actin is required to complete the collapse of fused the secretory granules

Actin il/lycopiirddatamohliplate thercoildapsatoftficseccretorscortanylesranules Myosin motor ¢ **O Pancreatic acini** Myo IIa **Myo IIa Phalloidin** Phalloidin Myosin MY2B Isoproterenol Control Myo IIb **Myo IIb Phalloidin** MY2A Bhat and Thorn, (2009) MBC

Myosin IIa and IIb are recruited onto the secretory granules

Andrius Masedunskas, Bob Adelstein, Marie Anne Conti

The impairment of the motor activity of myosin II affects the collapse of the SCGs

Model

Head and Neck Cancer

 Sixth most common cancer in the developed world (500,000 new cases; 250,000 deaths/year)

- 37,000 new cases of head and neck cancer/year (8,000 deaths/year) in U.S. (Cancer satistics, 2010)
- The incidence of oral cancer varies greatly worldwide
- 90-95% are squamous cell carcinoma
- 30-40% are originated from dorsal and lateral tongue
 Survival rate less than 50%

What is the role of membrane trafficking in invasion and metastasis?

Endosomal recycling

Directing molecules to specific locations of the PM Adhesion Signaling Matrix degradation Moving membranes in the direction of migration

Cell motility \longrightarrow Invasion and metastasis

1) Which recycling pathway controls the invasion process ?

2) How is invasion regulated by endosomal recycling ?

What is the role of membrane trafficking in invasion and metastasis?Endosomal recyclingRab GTPase

Close homologue of Rab11a and Rab11b Implicated in recycling in epithelial polarized cells

Interacts with integrin $\alpha 5\beta 1$ (Caswell PT et al., 2007)

Overexpressed in breast and ovarian cancer (Cheng JM et al., 2004)

Downregulated in breast cancer (Cheng KW et al., 2006) Downregulated in colon cancer (Nam KT et al., 2010)

The small GTPase Rab25 is down regulated in human HNSCC tissues

Amornphimoltham et al., man in prep

Experimental model

Xenograft in the mouse tongue

Patel et al., (2011) Cancer Research, Amornphimoltham et al., man in prep

H2B Endog fluo Stromal cells

Experimental model

Xenograft in the mouse tongue

Excitation 930 nm

Patel et al., (2011) Cancer Research, Amornphimoltham et al., man in prep

Rab25 re-expression blocks invasion and metastasis in vivo

Hela#3-Venus Rab25/ Hela#3-mCherry/ Lyve1

Amornphimoltham et al., (Man. in prep.)

Rab25 re-expression blocks invasion and metastasis in vivo

Hela#3-Venus

Depth: 180 um

00:00

Hela#3-Venus Rab25/ Hela#3-mCherry

Amornphimoltham et al., (Man. in prep.)

Rab25 plays an important role in preventing invasion and metastasis

What is the mechanism?

- 1) Pro-apoptotic
- 2) Prevent angiogenesis
- 3) Regulate cell cycle
- Cell motility
 Adhesion
 - Integrin trafficking?

Venus Rab25

No effect of Rab25 on integrin localization or trafficking

Amornphimoltham et al., (Man. in prep.)

Rab25 plays an important role in preventing invasion and metastasis

What is the mechanism?

- 1) Pro-apoptotic
- 2) Prevent angiogenesis
- 3) Regulate cell cycle
- 4) Cell motility
 - Cytoskeleton
- 5) Adhesion

Rab25 re-expression reduces actin-rich structures at the PM

Hela#3-Venus

Cells migrating in 3D

Phalloidin

Amornphimoltham et al., (Man. in prep.)

Rab25 re-expression reduces actin-rich structures at the PM

MAY 18-19, 2011

Frontiers in Intravital Microscopy

Symposium on Intravital Microscopy

May 18-19, 2011 Natcher building (Main auditorium) National Institute of Health Bethesda, MD

Speakers

Robert S. Balaban - NHLBI-NIH Micheal D. Cahalan - University of California, Irvine John J. Condeelis - Einstein College of Medicine Kenneth H. Dunn - Indiana University Peter Friedl - NCMLS - Nejmegen (NL) Ron Germain - NIAID-NIH Bradley T. Hyman - Mass General Hospital Rakesh K. Jain - Mass General Hospital Michael J. Levene - Yale School of engineering John J. Lemasters - University South Carolina Xinde Li - Johns Hopkins University Marshall H. Montrose - University of Cincinnati Mark Schnitzer - Stanford University Ulrich H. Von Andrian - Harvard Medical School Roberto Weigert - NIDCR-NIH

Sponsored by the National Institute of Dental and Craniofacial Research (NIDCR)

For more information please contact Roberto Weigert IMTU/OPCB/NIDCR (weigertr@mail.nih.gov)

Event will be videocast LIVE at http://videocast.nih.gov/

