George M. O'Brien Center

for Advanced Renal Microscopy and Analysis

Hands-on training in state-of-the-art techniques in fluorescence microscopy, with an emphasis on intravital microscopy of the kidney.

2011 Workshop on Applied Microscopy in Kidney Research

April 26th - 29th 2011

Indiana Center for Biological Microscopy Indianapolis, Indiana

Practical Intravital Imaging

Outline

Preparation/ Surgery

Positioning

Landmarks: Unstained/ Stained
Visual Indicators Determine Problems

Fluorescent Markers: Dye Characterization

Short Term Imaging (less than 30') Venous access: Jugular- Infusion of probes short line to minimize dead space Rectal Temp Probe

Long Term Imaging (greater than 30-45')
Venous/Arterial access:
Femoral venous- continuous infusion of
0.9% Saline at ~1.5cc/Hr
Femoral arterial- BP/ HR monitoring, long line
Temp Probe in Saline dish, monitor fluid bath temp

During prep/ probe infusion: Receive ~ ¾ to 1.5 cc 0.9% Saline

Hemostat Crushing outer skin and muscle layers to prevent bleeding

Long Forceps, w/ teeth hold outer skin during cutting

Large Scissors cutting outer skin

Small Scissors cutting inner muscle layers

2 small forceps, blunt tipped w/ no Teeth to handle the fat/capsule surrounding the kidney

- 1). Lay rat perfectly on its side w/ left side facing you.
- 2). Palpate flank gently to find kidney, draw line down flank if necessary (make this line as large as necessary).
- 3). Lift skin w/ large forceps, crush tissue w/ hemostats, hold for 5-10 seconds.
- 4). Using large scissors, cut across crushed tissue line, there should be no bleeding.
- 5). Repeat 3 & 4 w/ outer muscle layer, except use the small scissors
- 6). Crush the tissue on the 2nd muscle layer
- 7). Cut a small incision to visualize the kidney; a large incision will not hold the kidney out of the body. It is easier to make another small cut than to stitch.

Placement on Stage

Placement on Stage

Landmarks

Landmarks

Landmarks/Anomalies

Normal Infusion:

- 1). Should see dye in bloodstream within5-7 seconds
- 2). Appearance in field is fairly uniform
- 3). RBC's should appear as streaks across straight blood vessels

Alterations:

- 1). Appearance of dye exceeds 10 seconds
- 2). Appearance within field is staggered among vessels
- 3). Shape of RBC's is discernible, abundant plasma in vessels

Landmarks/Anomalies

Sclerotic Glomerulus

Damaged Glomerulus

Landmarks/Anomalies

Soluble thrombomodulin protects ischemic kidneys. Sharfuddin AA et al, J Am Soc Nephrol. 2009 Mar;20(3):524-34.

Flow Anomolies Proximal Tubule anomalies Cast material

Fluorescent Markers: in vitro calibration

Important when setting up experiment to collect quantitative data.

Involving collection of images that will later be used to determine and subtract background values.

Fluorescent Markers: *in vitro* calibration Prior use in cell culture

- 1.) Determine Cell Culture Concentrations (500ug/mL)
- 2.) Determine Plasma Volume of Rat (Typically ~3.5%; dyes do not cross into RBC's) 250g rat = 8.75 mL of plasma

 Dose = 4.3mg; Add ~20%, final Dose= 5.16mg
- 3). Load syringe w/ 2-3 doses, carefully monitor fluorescence during infusion

Fluorescent Markers: in vitro calibration

- 1). Carry out a dilution series of your stockmarker in PBS
- 2). Calculate a dilution factor of the stock solution (1:150, etc) that best uses the dynamic range of the microscope.
- 3). Calculate approximate plasma volume of rat bases on body weight (250g)= 8.75mL
- 4). Divide Plasma Volume (in uL)/ Dilution Factor) 8750/150= ~58.333uL stock
- 5). Add at least 20% extra (light scatter through tissue, dead space in venous line)
- 6). Dilute into at least 500-750uL of Normal Saline, watch monitor as you infuse to assure you do not saturate your specimen.

^{*}Crucial probes retained in the blood.

Fluorescent Markers: in vitro characterization

Rhodamine 123 (cell culture)

Rhodamine 123 (green)/TMRM (red)

Rhodamine 123 (in vivo) Adv Drug Deliv Rev. 2006 Sep 15;58(7):809-23 2006 Aug 15. Review

Rhodamine B Hexyl Ester (in vivo) White Blood Cell (red arrows) Endothelial Cell (yellow arrows)

Adv Drug Deliv Rev. 2006 Sep 15;58(7):809-23 2006 Aug 15. Review

Acknowledgements

Silvia B Campos-Bilderback George J Rhodes Sarah E Wean

Exing Wang

Gosia Malgorzata
Jeff Clendenon
Jason Byars (New Mexico)

