

Advancing Nephrology Through 2-Photon Microscopy

Bruce A. Molitoris

Department of Medicine Indiana Center for Biological Microscopy Indiana University School of Medicine

Reversing Reductionism

Visualizing Glomerular & Nephron Function

Intra-Vital Imaging Sensitivity vs Resolution

TWO-PHOTON MICROSCOPY PRINCIPLE:

Volume of fluorescence excitation –

Confocal versus 2-photon microscopy

Figure courtesy of Brad Amos, MRC Laboratory

High Oxygen Aerobic metab. Minimal anaerobic metab Fatty acids, acetoacetate No glycogen Fluid Phase and Receptor Mediated Endocytosis Sensing environment, TLR Long lived cell

...

Nucleus

Endosome

Golai

endosome

Lysosome

Mitochondria

Modified from Kidney & Urinary Tract Eighth Edition

Figure 4

Total Texas Red Gentamicin Uptake-Day 1

Texas Red Gentamicin, 10,000 MW Cascade Blue Dextran 24 hr post injection

CLP Induces TLR4 Expression in Proximal Tubule Cells

El-Achkar TM, et al. Am J Physiol Renal Physiol. 2006

LPS Endocytosis is Receptor Mediated

Blue: cascade blue LMWD, fluid phase

Red: Alexa 568-LPS

Pre exposure: 0.25 mg/Kg unlabeled LPS 24 hr pre to upregulateTLR4

LMWD WT or TLR4 KO

TLR4 KO

WT pre exposed P. Dagher unpublished observation

WT

Proximal Tubule Uptake Explains Differential Filtration

Yu et.al AJP 2005 and Nephron Physiol 2006

Evaluating for Functional Impairment

Red Channel Alone

Green Channel Alone

Color Combine

TAMRA Oligo (red)

Beta-2-microglobulin (green)

Long Term 25mg/Kg 10% TAMRA 24Hrs Post Injection of β 2M

Cy3-siRNA Filtration and Reabsorption by PTCs

Molitoris et.al. JASN 2009

PTC Uptake and Metabolism of Cy3-siRNA

Quantifying Vesicular vs Cytosolic Cy3-siRNA in PTCs

Molitoris et. al. JASN 2009

Rapid Metabolism of siRNA in PTC by In situ Hybridization

В

D

1h Post SiRNA Treatment

24h Post SiRNA Treatment

Non-Specific Probe

С

Specific probe Non-Treated Kidney

Molitoris et.al JASN 2009

Effect of siRNA to P53 on Expression, Apoptosis and Kidney Function

siP53 Protects Against Cisplatin Induced Kidney Injury

A vicious cycle

Elderly/Diabetes mellitus/CKD

Decreased renal/perfusion function

Altered renal microvasculature Attenuation of capillary labyrinth Vulnerable endothelium

Renal injury: Decreased renal blood flow NSAIDs, Radiocontrast, Surgery

Acute kidney Injury

Albumin Filtration and Reabsorption in the Rat

Albumin Filtration and Reabsorption in the Rat

Effect of Early Diabetes in the Rat on Albumin Filtration and Reabsorption

Effect of Early Diabetes in the Rat on Albumin Filtration and Reabsorption

Russo et.al. JASN 2009

PTC Albumin Transcytosis

Summary

The Proximal Tubule cell is a long lived cell with avid endocytosis

Endocytosis is necessary for recycling filtered materials

Unfortunately, this includes toxins that accumulate and cause cell injury

RNAi therapy is perhaps best applied to the Proximal Tubule

Presently it is possible to inhibit upregulation of specific proteins

It is also possible to down regulate specific proteins

Clinical trials are underway for both uses of RNAi in Proximal Tubule cells

There are many untested potential targets for endocytic processes in PTCs

Visualizing Vascular, Glomerular & Nephron Function

Vessel Diam.=7.5 um Ave.Speed=14um/sec

Vessel Diam.=8 um Ave Speed=147um/sec

Vessel Diam.=23 um Ave Speed=18um/sec

Vessel Diam.=24 um Ave Speed=199um/sec

Vessel Diam.	Ave Speed	St. Dev
relative speed	in um/sec	
7.5um-slow	14.6	2.07364414
8.0um-fast	147.4	14.3805424
25um-slow	18.4	1.67332005
24um-fast	199.2	9.5760117

Microvascular Blood Flow at 24h Post Ischemia Effect of sTM

Saline treated

sTM treated

velocity (μm/sec) *P < 0.05	Blood Flow	253.36+/-95.01	786.75 +/- 280.75 *
$(\mu m/sec)$ *P < 0.05	velocity		
	(µm/sec)		*P < 0.05

Sharfuddin et.al JASN 2009

Leukocyte-Endothelial Interactions – Intra-Vital 2-Photon

Ischemic – Saline treated rat at 24h

	Saline	sTM treated
Flowing (%)	69.5	88.3 *
Rolling (%)	18.2	8.3 *
Static (%)	12.9	3.3 *
* p<0.05		

Sharfuddin et.al. JASN 2009

with/without sTMGross Specimens

Effect of sTM Therapy on Kidney Function in Acute Kidney Injury

Effect of Pre-treatment with Soluble Rat Thrombomodulin on AKI

Sharfuddin et.al. JASN 2009

NMR Prior to Kidney Donation

Acute Kidney Injury

Resolution of AKI

Rosenthal et.al JASN, 2003

Microvascular Flow in CLP

4Hr CLP

Endothelial Pathophysiologyic Events in AKI

Sharfuddin and Molitoris Nature Neph Reviews 2011

Major Cellular Components and Physiologic Effects of AK

Spatial Specificity Achieved by Micro-Infusion of Bacteria into Proximal Tubules

Determining blood flow rates in vivo

UPEC wt

PBS

Proximal Tubule E. coli Infection: Effect of Virulence Factor

LE Månsson et al, Cell Microbiol 2007 Feb; 9(2) 413-24

Bacterial Infection Causes Rapid Drop in Tissue Oxygen Tension (pO₂)

Infection Triggers Increased Oxygen Consumption in Renal Cells

Clotting Cascade Genes are Up-Regulated in Infected Kidneys

Heparin-Treatment Causes Systemic Bacterial Spread, Rats Die from Sepsis

Animals treated with heparin (400~U/kg) to prevent clotting

Micropuncture Delivery of Adeno-eGFP Actin

Proximal Tubules 48 hr post Viral Injection

Proximal Tubules Post Fixation and rhodamine Phalloidin Staining;.

Tanner et.al. AJP-Renal 2005

Apical Membrane Bleb and Tubular Cast Formation in Ischemia

Ashworth et.al. Kidney Int. 2007

Actin Components of a Urinary Cast in Acute Renal Failure

Molitoris , Kidney Int. 200

Table 1. Investigational uses for multi-photon microscopy

Glomerular Size/volume Permeability/filtration Fibrosis/sclerosis Microvasculature RBC flow rate Endothelial permeability WBC adherence/rolling Vascular diameter Cellular uptake Cell type-specific uptake Site - apical vs. basolateral membrane Mechanism - endocytosis vs. carrier/transporter mediated Cellular trafficking Intracellular organelle distribution Cytosol localization Cellular metabolism Fluorescence decay over time Cell toxicity Cell injury in necrosis, apoptosis Surface membrane/blebbing Mitochondrial function Glomerular filtration rate determination

