Visualizing protein interactions in living cells: FRET with the fluorescent proteins

Overview

- The genetically encoded fluorescent proteins (FPs):
- General characteristics of the FPs.
- Mutant color variants based on A.v. GFP.
- FPs derived from *Discosoma striata* mRFP and the fruits.
- New FPs derived from corals.
- The (current) best FPs.
- Förster (Fluorescence) resonance energy transfer (FRET):
- General requirements for FRET.
- Spectral bleedthrough background.
- Methods used to measure FRET strengths and weaknesses.
- Summary.

Aequorea victoria Green Fluorescent Protein (GFP)

- Aequorea victoria makes the chemiluminescent protein aequorin, which emits blue light.
- GFP absorbs the blue light and shifts the emission to green light.
- The cloning of GFP caused a *revolution* in cell biology allowing genetically encoded fluorescence labeling.

General characteristics of GFP

• Using purified GFP, Shimomura showed that a 6 AA fragment was responsible for all light absorption properties.

-SYG-:

© RNDayO'Bri

© RNDayO'Bri

General characteristics of GFP

The wild type GFP displays a complex absorption spectrum:

M₁....VTTF-S₆₅Y₆₆G₆₇-VQCFS...K₂₃₈

The Tyr66 is protonated, and absorbs strongly at 397 nm.

A charged intermediate accounts for the secondary absorption at 476 nm.

© RNDayO'BrienWS'

© RNDayO'BrienWS

General characteristics of GFP

In 1996, the crystal structure of GFP was solved, showing the cyclic tripeptide buried in the center of an 11-strand β -barrel:

General characteristics of GFP

- Wild type GFP folds poorly at physiological temperature.
- "Humanized" codon usage, Kozak initiation codon.
- Mutations that improve efficiency of chromophore formation:
 - F64L dramatically improved maturation at 37°;
 - V68L enhances chromophore oxidation;
 - N149K improves folding rate;
 - M153T, V163A enhances folding.
- The enhanced FPs (e.g., EGFP)

Mutant variants of A.v. GFP

Mutation of the chromophore position Ser 65 > Thr stabilized the chromophore, yielding a single absorption peak at 489 nm.

- GFP^{S65T} more useful for live-cell imaging.
- Other chromophore mutations shifted the emission spectrum: Tsien (1998) Ann Rev Biochem. 67:509 © RNDayO'Bri

Aequorea FPs and dimer formation

• Most of the natural FPs that have been characterized are either dimers, tetramers, or higher-order complexes.

• GFP could be crystallized as a monomer, but the proteins can form dimers when highly concentrated.

Aequorea FPs and dimer formation

- Dimerization is not typically observed when the proteins are free to diffuse within the cell;
- but, the expression of FPs at high concentrations in a diffusion limited volume can lead to the formation of dimers.

The substitution of alanine²⁰⁶ with lysine (*A206K*) prevents dimer formation.

Zacharias et al (2002) *Science* **296**:913; Kenworthy (2002) *TBCS* **27**:435

This is *especially* important for FRET-based imaging methods.

© RNDayO'BrienWS'

Overview

- The genetically encoded fluorescent proteins (FPs):
- General characteristics of the FPs.
- Mutant color variants based on A.v. GFP.
- FPs derived from *Discosoma striata* mRFP and the fruits.

© RNDayO'BrienWS'

© RNDayO'Brien\

but, mRFP was not optimal

 mRFP1 has decreased quantum yield and photostability; a non-fluorescent form absorbs at 503 nm - 60% in a dark state. Hillesheim et al. (2006) *Biophys J* 91:4273

Overview

- The genetically encoded fluorescent proteins (FPs):
- General characteristics of the FPs.
- Mutant color variants based on A.v. GFP.
- FPs derived from *Discosoma striata* mRFP and the fruits.
- New FPs derived from corals.

Sakaue-Sawano et al. (2008) Cell 132:487

Entacmaea quadricolor anemone Entacmaea quadricolor anemone Directed evolution of a dimeric eqFP611 from Entacmaea quadricolor for selection of a bright monomeric Red FP: Key mutations: eqFP611 F1021 + 29 mutations. Ex 558 nm, Em 605 nm;

The cloning of novel FPs from corals: mRuby

- intrinsic brightness of 39;
- Maturation 2.8 h, photostable.

Kredel et al. (2009) PLoS One 4:e4391

7

--- Excitation

Subcellular distribution of FP-tagged proteins

Distribution: Does the fusion protein replicate the localization of the endogenous protein?

Function:

Does the fusion protein have *all* of the functions of the endogenous protein? (rapid, efficient maturation, monomer help)

Protein	Color	Peak Ex	Peak Em	Brightness	Photo- Stability	Reference	Source
EBFP2	Blue	383	448	18	++	Al el al 2007	Dr. Robert Campbell
Cerulean3	Cyan	433-445	475-503	35	++++	Markwardt et al. 2011	Dr. Mark Rizzo
mTFP	Teal	462	492	54	+++	Ai et al. 2006	Allele Biolech
EmGFP	Green	487	509	39	++++	Cubitt et al. 1999	Invitragen
Venus	Yellow/Grn	515	528	53	+	Nagai et al. 2002	Dr. Atsushi Miyawaki
REACh	Yellow/Gm	515	528	1*	÷	Ganesan et al. 2006	Dr. Sundar Ganesan
Amber	None	ND	ND	0**		Koushik et al. 2005	Dr. Steven Vogel
mKO2 (Kusabira)	Orange	551	565	36	+++	Karasawa et al. 2004; Sakaue-Sawano 2008	MBL International
mTagRFP-T	Orange	555	584	31	++++	Merzlyak et al. 2007 Shaner et al. 2008	Evrogen
tdTomato	Orange	554	581	95	+++	Stianer et al. 2004	Dr. Roger Tsien
mRuby	Red	558	605	39	****	Kredel et al. 2009	Br. Jong Wiedenmann
mCherry	Red	587	610	17	-+++	Shaner et al. 2004	(Claning)
mKate	Deep Red	588	635	15	3111	Shcherbo et al. 2007	Earogen

Overview

- The genetically encoded fluorescent proteins (FPs):
- General characteristics of the FPs.
- Mutant color variants based on A.v. GFP.
- FPs derived from *Discosoma striata* mRFP and the fruits.
- New FPs derived from corals.
- The (current) best FPs.
- Förster (Fluorescence) resonance energy transfer (FRET):
- General requirements for FRET.
- Spectral bleedthrough background.
- Methods used to measure FRET strengths and weaknesses.
- Summary.

© RNDayO'BrienWS'

Förster (Fluorescence) resonance energy transfer (FRET)

- FRET is the direct transfer of excited state energy from a donor fluorophore to a nearby acceptor.
- A fluorophore in the excited-state is an oscillating dipole that creates an electric field (the donor D).
- If another fluorophore enters the electric field, energy can be transferred directly to that fluorophore (the acceptor A).

The spectral overlap requirement The donor emission spectrum must significantly overlap the absorption spectrum of the acceptor.

Sensitized emission: C/EBP α dimer formation

• The two spectral crosstalk components, determined from the control cell measurements, are removed from the FRET image.

Sensitized emission measurements

- Strength -
- Simple algorithms available on most imaging systems;
- Compatible with most types of imaging (except 2-photon).
- Weakness -
- Very sensitive to quality of the control data;
- Subject to artifacts of cell movement.

© RNDayO'BrienWS'1

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Acceptor photobleaching

 Energy transfer results in quenching of D emission and sensitized emission from the A.

© RNDayO'BrienWS'

Acceptor photobleaching

- Energy transfer results in quenching of D emission and sensitized emission from the A.
- Photobleaching the acceptor relieves donor quenching.
- De-quenching is detected in the donor channel less prone to spectral bleedthrough.

Acceptor photobleaching

Strength -

- Simple approach that uses each cell as its own control - can be very accurate.
- Commonly used to verify results from other methods.

Weakness -

- Requires selective bleaching;
- Subject to artifacts of cell movement.
- Endpoint assay no dynamics.

Fluorescence Lifetime

 $1/\tau = k_F + k_{FT}$

- FRET is a quenching pathway that directly influences the excited state:
- Quenching: nonradiative energy transfer (k_{ET}) allowing transition to the ground state without fluorescence emission.

 Quenching events cause the fluorescence lifetime to shorten this can be accurately measured microscopically.

Verifying results with pbFRET

- The quenched state of the donor can be verified by acceptor photobleaching.
- Photobleaching Venus results in dequenching and a return to the radiative (τ_0) lifetime of mTFP1.

Fluorescence Lifetime

Strength -

- Measurements are not influenced by intensity or probe concentration;
- Quenched (bound) and unquenched donor populations quantified.
- Independent method to verify intensity measurements.

Weakness -

- System and analysis are complex;
- Photon-intensive measurements can take many seconds to acquire.

© RNDavO'Bri

© RNDayO'Brien

FRET Summary

- The absence of FRET does not mean that two proteins do not interact!
- FRET signals do not *prove* a direct interaction between two proteins they define the spatial relationship of the fluorophores.
- Spectral bleedthrough limits the detection of FRET signals:
- ratio imaging is straightforward but only applies to the biosensor proteins with linked FPs (fixed 1:1);
- computer algorithms estimate and remove the SBT but rely on data from different control cells;
- acceptor photobleaching FRET overcomes this limitation, but is an end-point assay;
- fluorescence lifetime methods provide independent verification, but measurements take time, and the analysis is complex.

FRET Summary

- Use FRET standards to characterize the experimental model, and check the imaging system.
- FRET measurements don't replace biochemical approaches both are necessary.
- FRET measurements can provide evidence for protein interactions in the context of the living cell, *but...*
- it is critical to verify FRET measurements!
- Sensitize acceptor measurements > acceptor photobleaching
- Donor lifetime measurements > acceptor photobleaching

Protein	Color	Peak Ex	Peak Em	Brightness	Photo- Stability	Reference	Source
EBFP2	Blue	383	448	18	++	Ai et al. 2007	Dr. Robert Campbell
Cerulean3	Cyan	433-445	475-503	35	++++	Markwardt et al. 2011	Dr. Mark Rizzo
mTFP	Teal	462	492	54	+++	Ai et al. 2006	Allele Biotech
EmGFP	Green	487	509	39	++++	Cubitt et al. 1999	Invitrogen
Venus	Yellow/Grn	515	528	53	+	Nagai et al. 2002	Dr. Atsushi Miyawaki
REACh	Yellow/Grn	515	528	1*	+	Ganesan et al. 2006	Dr. Sundar Ganesan
Amber	None	ND	ND	0**		Koushik et al. 2006	Dr. Steven Vogel
mKO2 (Kusabira)	Orange	551	565	36	+++	Karasawa et al. 2004; Sakaue-Sawano 2008	MBL International
mTagRFP-T	Orange	555	584	31	++++	Merzlyak et al. 2007; Shaner et al. 2008	Evrogen
tdTomato	Orange	554	581	95	+++	Shaner et al. 2004	Dr. Roger Tsien
mRuby	Red	558	605	39	++++	Kredel et al. 2009	Dr. Jorg Wiedenmann
mCherry	Red	587	610	17	+++	Shaner et al. 2004	Clontech
mKate (Katushka)	Deep Red	588	635	15	++++	Shcherbo et al. 2007	Evrogen

* Dark probe useful for FRET-FLIM; ** Y66C mutant folds but does not absorb or emit - important control for FRET-FLIM. Adapted from Day and Davidson, 2009.