AUTONOMOUS NEURAL CONTROL OF GASTROPARESIS

Matthew P. Ward, Ph.D.

Research Scientist
Center for Implantable Devices
Weldon School of Biomedical Engineering
Purdue University

https://engineering.purdue.edu/CID

Funding Acknowledgment

This project was funded, in part, with support from the Indiana Clinical and Translational Sciences Institute, funded, in part, by Grant Number UL1TR001108 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award
Characteristics of Gastroparesis

Diagnosis
- Symptoms
 - Nausea
 - Vomiting
 - Early satiety
- Delayed gastric emptying on nuclear scintigraphy
- Absence of anatomic gastric outlet obstruction

Epidemiology
- **Incidence (per 100,000)**
 - 2.4 (M)
 - 9.8 (F)
- **Prevalence (per 100,000)**
 - 9.6 (M)
 - 37.8 (F)
- **Survival (5 year)**
 - 80% (p < 0.05 vs. expected)

Jung et al. Gastroenterology 136:1225-1229, 2009

Etiology of Gastroparesis

- **Diabetes Mellitus:** neuropathy (?)
- **Idiopathic:** post-viral, myopathy, neuropathy, autoimmune
- **Post-surgical:** vagotomy, Nissen fundoplication
Gastroparesis Treatment Options

- Diet
- Promotility agents
- Anti-nausea medication
- GJ (gastrojejunostomy) tube
- TPN (total parenteral nutrition)
- GES (gastric electrical stimulation)

Enterra® II Gastric Electrical Stimulator (Medtronic, Inc.)

State of Gastric Electrical Stimulation

- Mechanism unknown
- Up to six months for symptom improvement
- No correlation between symptom improvement and improvement in gastric emptying rate
- GES efficacy
 - Diabetic: 80-90%
 - Idiopathic: 60-70%
 - Post-surgical: 60%

GES device implants (FY 2013)
 - Worldwide: >8,000
 - United States: 1,141

Enterra® II Gastric Electrical Stimulator (Medtronic, Inc.)
COLLABORATE AND TRANSLATE

IU GASTROENTEROLOGY/HEPATOLOGY

Purdue Biomedical/Electrical Engineering

The Gastroparesis Team

Thomas V Nowak, MD
Gastroenterologist, GI Motility and Neurogastroenterology Unit
Professor of Clinical Medicine
Indiana University School of Medicine

Mathew P Ward, PhD
Research Scientist
Center for Implantable Devices
Weldon School of Biomedical Engineering
Purdue University

Pedro P Irazoqui, PhD
Director, Center for Implantable Devices
Associate Head for Research, and Associate Professor
Weldon School of Biomedical Engineering
Associate Professor of ECE
Purdue University

John M Wo, MD
Director, GI Motility and Neurogastroenterology Unit
Professor of Medicine
Indiana University School of Medicine

Anita Gupta, MD
Motility Research Coordinator, GI Motility and Neurogastroenterology Unit
Indiana University School of Medicine
Goals for Gastroparesis

• Improve patient care
 – Enhance efficacy, reduce cost-of-care
 – Simplify device tuning protocols

• Translate promising biomedical tech to the clinic
 – Leading physicians/investigators
 – Leading engineering school

• Develop next-generation, personalized medicine
 – Biomarker/response marker discovery
 – Self-optimizing therapy

Central Hypothesis
Gastric electrical stimulation modulates nausea and vomiting through a vagal mechanism

Problems with GES Therapy

• Variable (often short) battery life

• Stimulating lead failure
 – Dislodge from generator
 – Break

• No measurable (“objective”) response marker

• No standard device tuning protocol

Enterra® II Gastric Electrical Stimulator (Medtronic, Inc.)
Our Solution: Battery Life

- Variable (often short) battery life
- Stimulating lead failure
 - Dislodge from generator
 - Break
- No measurable (“objective”) response marker
- No standard device tuning protocol

\[\leftrightarrow\] Wireless power transfer and supercapacitor technology

- Miniature, leadless stimulation and measurement technology
- Noninvasive measurement of vagal nerve response to GES
- Autonomous neural control technology

Demo: Wireless Power Transfer
Power Storage: Supercapacitor

- Integrated within package
- Size < 1 mm² relevant to buoy antenna design
- Capacity: 1 µW/hour for 16 hours on a single charge

Our Solution: Stimulating Leads

- Variable (often short) battery life
- Stimulating lead failure
 - Dislodge from generator
 - Break
- No measurable (“objective”) response marker
- No standard device tuning protocol
- Wireless powering technology
- Miniature, leadless stimulation and measurement technology
- Noninvasive measurement of vagal nerve response to GES
- Autonomous neural control technology
Demo: Leadless Pressure Sensor

• Wireless power and data transfer
• Light (<4g) fully implantable, 5x8.5x2 mm package
• Electrical stimulator option, pulses as short as 8us, 2mA
• Fiber optic stimulator option for optogenetic research
• 1 or 2 recording channels up to 5K samples/s
• Input signal amplitude range of 35uV - 10mV
• Frequency response of 5 - 2500 Hz
• Wave Stage compatible with Windows, OS X, and Linux
Our Solution: Response Markers

- Variable (often short) battery life
 - Wireless powering technology
- Stimulating lead failure
 - Dislodge from generator
 - Break
 - Miniature, leadless stimulation and measurement technology
- No measurable (“objective”) response marker
 - Noninvasive measurement of vagal nerve response to GES
- No standard device tuning protocol
 - Autonomous neural control technology

The Compound Nerve Action Potential

Experimental Setup: Gastric Electrical Stimulation in Rat

Autonomous Neural Control System [1]

Preliminary Observations in Rat

- Reproducible bioelectric activity from left cervical vagus (antral stimulation)
 - Smooth muscle component
 - Nerve component
- Activation threshold depends on stimulating electrode placement

- Response latency is inversely related to stimulus pulse amplitude
- The response marker is measurable from the nerve and skin surface
- Response averaging required to enhance signal-to-noise ratio

No GES-evoked Response Following Vagotomy

Pre-Vagotomy

Post-Vagotomy

Vagal CAP Measurement with Cutaneous Electrodes in Rat

Black trace: Cuff electrode recording (N = 20)
Red trace: Cutaneous electrode recording (N = 20)
Vagal CAP Measurement with Cutaneous Electrodes in Human Subjects

Ex. Summary of 15-min Recording Session
Our Solution: Objective Tuning

- Variable (often short) battery life
- Stimulating lead failure
 - Dislodge from generator
 - Break
- No measurable (“objective”) response marker
- No standard device tuning protocol
- Wireless powering technology
- Miniature, leadless stimulation and measurement technology
- Noninvasive measurement of vagal nerve response to GES
- Autonomous neural control technology

The Gold Standard in Neurostimulation

- Increase stimulus until:
 1. Adverse effects occur
 2. Average setting is reached
 3. Patient reports symptom relief
- Repeat every few weeks
- Major limitations:
 1. Body ignores stimulus over time
 2. No control over target neuron type
 3. No true “dosing” method
Ex. Response to 30s of Constant Stimulation

Parameters:
- $I_{st} = 0.5$ mA
- $t_{st} = 0.4$ ms
- PRF = 5 Hz
- $t_{train} = 30$ s

The New Standard: Autonomous Neural Control

- Personalized medicine
- Amenable to any:
 - Patient
 - Nerve
 - Neuron type
- Therapy based on activation level maintenance
 - e.g., 0 to 100% activation
- Utilizes a nerve activation prediction model

Ex. Response to 140s of Constant Activation

Parameters:
• I_{st} = Variable
• t_{st} = 0.5 ms
• PRF = 1 Hz
• t_{train} = 140 s

Ex. Response to 140s of Constant Activation

Parameters:
• I_{st} = Variable
• t_{st} = 0.5 ms
• PRF = 1 Hz
• t_{train} = 140 s

A fibers

C fibers
Constant Activation with Variable Stimulation Strength

Solutions for GES Therapy

- Variable (often short) battery life
- Stimulating lead failure
 - Dislodge from generator
 - Break
- No measurable ("objective") response marker
- No standard device tuning protocol

| Wireless power transfer and supercapacitor technology |
| Miniature, leadless stimulation and measurement technology |
| Noninvasive measurement of vagal nerve response to GES |
| Autonomous neural control technology |
Dynamic Control of Gastroparesis

Approach

- Innovate with the end user in mind
- Fit device to patient, not patient to device
- Use ANC to link vagal response marker to:
 - Patient symptom surveys
 - Gastric output
 - Blood biomarkers
 - Exams
 - Other health data?

Summary of Collaboration

Scope of Work

- Design clinical study to evaluate new tools and treatments
- Compare VNS to GES in animal model of diabetic gastroparesis
- Use algorithm to replicate human action potential patterns in rat

Aim 1

- Clinical Study (IUSM)
 - Classify GES-evoked vagal nerve compound action potentials

Aim 2

- Correlate vagal nerve response to gastric stimulation efficacy

Aim 3

- Animal Study (Purdue)
 - Develop new diagnostic and therapeutic tools for gastroparesis

New intellectual property

Apply for extramural funding

Publish

Apply for extramural funding

Publish
Acknowledgments

- **Center faculty & industry members:**
 - **Epilepsy**
 - John Jefferys, Ph.D.
 - Eduardo Juan, Ph.D.
 - Robert M. Worth, M.D.
 - **Parkinson’s**
 - Leo Rubchinsky, Ph.D.
 - Robert M. Worth, M.D.
 - **Targeted Muscle Reinnervation**
 - Todd Kuiken, M.D./Ph.D.
 - Levi Hargrove, Ph.D.
 - Rob Burgess, Ph.D.
 - Kevin Seburn, Ph.D.
 - **Alcoholism & Addiction**
 - Zachary Rodd, Ph.D.
 - Da Ting Lin, Ph.D.
 - Jessica Widlen, M.D.
 - **Glaucoma**
 - Simon John, Ph.D.
 - Gabriel Simon, M.D., Ph.D.
 - Qura Inc.
 - ON Semiconductor
 - **Sponsors**
 - Indiana CTSI
 - DARPA, NIH, NSF
 - Cyberonics, Inc.
 - Pew Charitable Trust
 - Howard Hughes Medical Institute
 - Wallace H. Coulter Foundation
 - CURE Epilepsy
 - Epilepsy Research UK

- **Director**
 - Pedro P. Irazoqui, Ph.D.

- **Center student members**
 - **Research Scientists**
 - Matthew Ward, Ph.D.
 - Quan Yuan, Ph.D.
 - **Post-doctoral students**
 - Choizhou Meng, Ph.D.
 - Jimin Maeng, Ph.D.
 - **Graduate Students**
 - Muhammad Arafat
 - Hansraj Bhamra
 - Young Joon Kim
 - Steven Lee*
 - John Lynch
 - Dan Pederson
 - Jui-Wei Tsai
 - Jack Williams
 - **MD/PhD Students**
 - Gabriel Albors, Managing Director
 - Henry Zhang, Engineer

- **Technical staff**
 - Gabriel Albors, Managing Director
 - Henry Zhang, Engineer

Thank You